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Abstract 
 Although theory suggests the relationship between crime and wealth is ambiguous, most 
empirical analyses estimate a monotonic relationship and find that wealth has negative effect on 
crime.  Using two proxies for wealth (median income and poverty rate) and two types of crime 
(property and violent), we find a quadratic relationship is the best fit for our four crime-wealth 
groups. In general, the expected negative effect of wealth on crime only applies to wealthier 
counties. In poorer counties, wealth has an unexpected positive effect on crime. This result may 
be theoretically consistent, or an unintended byproduct of the Uniform Crime Reports data, 
which do not include unreported crime. 
 
 
JEL Classification Codes: J1, K42 
 
Keywords:  crime, wealth, Uniform Crime Reports 
 
 
We are grateful to The Smith Charitable Trust Summer Research Fellows Program and to Taylor 
Ciavarra for excellent research assistance. Finally, we thank the participants of the Holy Cross 
Department of Economics Research Seminar for helpful comments.  
 

                                                 
H Chihiro Muroi, Department of Economics, College of the Holy Cross, Worcester, MA 

01610-2395, cmuroi09@holycross.edu 

HH Robert Baumann, Department of Economics, Box 192A, College of the Holy Cross, 
Worcester, MA 01610-2395, 508-793-3879 (phone), 508-793-3708 (fax), 
rbaumann@holycross.edu 



Introduction  

Economists have long been interested in crime. Becker’s (1968) seminal study 

and its immediate followers (Ehrlich, 1973; Sjoquist, 1973; Block and Heineke, 1975) 

model the relationship between crime and a variety of covariates, including deterrence, 

police expenditures, and wealth. Nearly all theoretical approaches model participation in 

crime as a substitute for legitimate employment. For example, Ehrlich (1996) notes the 

supply of crime is determined by the expected net return, which equals expected gross 

return minus forgone wages at a legitimate job and expected punishment. In this setting, 

it is tempting to assume that an increase in wealth should decrease crime because 

foregone earnings are increasing. However, if the increase in wealth applies to the 

individual and his surroundings, then the expected return of crime rises. In this case, the 

relationship between crime and wealth is ambiguous. In fact, Block and Heineke (1975) 

note the sign of this relationship is indeterminant in the general case and positive 

assuming risk aversion and the psychic cost of crime is independent of wealth. 

Nevertheless, the vast majority of empirical research estimates a monotonic function 

(typically a linear model or log transformation) and finds a negative relationship between 

wealth and crime.  

The increase in data availability allowed many of these early theoretical 

relationships to be tested, and the most common aggregate data set is the Federal Bureau 

of Investigation’s Uniform Crime Reports (UCR). UCR data are attractive for many 

reasons. They are available annually, at the county-level, and split crime into eight 

categories. But UCR data can only count crimes that are reported. Not only does this 

underestimate the amount of crime, Levitt (1998) notes reporting tendencies and how 
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crimes are classified are not equal across areas. Victimization data alleviate some of these 

problems, but the most common victimization data set (National Crime Victimization 

Survey, public release) does not identify a geographical location smaller than four regions 

of the United States. For this reason, UCR data will likely remain common in the crime 

literature.  

We find an unusual aspect of UCR data when investigating the relationship 

between crime and wealth at the county level. Using median income and the poverty rate 

as proxies for wealth, we find a quadratic relationship between wealth and crime fits best.  

Specifically, the effect of wealth on crime is negative (the expected sign) for rich counties 

but positive (the unexpected sign) for poor counties. We offer two explanations. First, this 

result can be considered theoretically consistent. In this scenario, an increase in wealth 

raises expected returns of crime faster than foregone wages for poor counties, and vice 

versa for rich counties. Second, the quadratic effect may be the result of using only 

reported crimes rather than all crimes. For example, an increase in wealth in a poorer 

county may also raise reporting tendencies because of greater trust of law enforcement by 

locals or higher police expenditures. Regardless of the cause, researchers should be aware 

of this aspect of UCR data.  

Literature and Methods  

As mentioned in the introduction, Becker (1968), Ehrlich (1973), Sjoquist (1973), 

and Block and Heineke (1975) are widely considered to be the first economic analyses of 

crime. These studies inspired a number of empirical approaches that test the relationship 

of crime and a variety of covariates, such as unemployment (Cantor and Land, 1985; 

Chiricos, 1987; Raphael and Winter-Ebmer, 2001; Gould, Weinberg, and Mustard, 2002), 
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wages (Grogger, 1998; Levitt, 1999; Gould, et al., 2002), poverty (Lee, 2000), education 

(Sjoquist, 1973; Lochner, 2004; Lochner and Moretti, 2004; Buonanno and Leonida, 

2009), inequality (Bourguignon, 2001; Kelly 2000; Fajnzylber, Lederman, and Loayza, 

2002), and deterrence (Ehrlich, 1981; Cornwell and Trumbull, 1994; Corman and Mocan, 

2000; Liedka, Piehl, and Useem, 2006).  

UCR data is the most common data set in empirical analyses of crime. Among the 

empirical papers mentioned above, Cantor and Land (1985), Chiricos (1987), Levitt 

(1998), Kelly (2000), Raphael and Winter-Ebmer (2001), Gould, et al. (2002), Lochner 

(2004), and Liedka, et al. (2006) use UCR data. In addition, Sjoquist (1973) and Lee 

(2000) use data on reported crimes from the FBI. Although UCR data are available 

annually at the county-level, its lack of unreported crimes bias the results if the amount of 

unreported crime is correlated with unemployment, wealth, education, or any of the other 

key covariates mentioned above.  

The logic behind our estimations most closely follows the studies by Isaac Ehrlich 

(1973, 1977, 1981, and 1996), although similar rationale can found elsewhere. In 

Ehrlich’s 1996 study, he notes the demand for crime comprises the demand for stolen 

goods and society’s tolerance of crime. In comparison, the supply of offenses is 

determined by the expected net return which equals expected gross return minus forgone 

wages and expected punishment. This implies a reduced-form model where crime is a 

function of expected gross return, foregone wages, and punishment. Since UCR data are 

aggregate at the county level, it is impossible to separate expected gross return and 

foregone wages, which forces us to simplify the reduced-form model to crime as a 

function of wealth and punishment. While this simplification is not ideal, it is common in 
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the empirical literature. We also follow the empirical literature by including a variety of 

demographic controls, such as racial/ethnic, gender, and age distribution to produce a 

standard empirical model of crime.  

Data 

UCR data are available annually, at the county-level, and include eight types. We 

create two broader categories from these eight types of crime. Violent crime is committed 

with force, and consists of murder/manslaughter, rape, robbery, and assaults. Property 

crime consists of burglaries, larceny, arson, and motor vehicle theft. The theory is a better 

match for property crime, since these crimes are more likely to be done for financial gain 

while the motivations for violent crime are less understood. Nevertheless, we present 

results for both types.1 We scaled both types of crime so that each is per 100,000 people 

to control for differences in population. In addition, many small counties have potentially 

unreliable data because of fewer reporting agencies, so we use counties with at least 

50,000 residents.  

All other controls come from the City and County Data Book (CCDB). We use 

two proxies for wealth at the county-level: median income and poverty rate. Because of 

limited CCDB data availability, the sample frame for estimations is 2000 to 2004 

inclusive. Demographic data consists of racial/ethnicity composition (percent of black, 

Hispanic, and Asian residents), gender, and age distribution. Because of their unique 

racial and ethnic compositions, counties in Hawaii or Alaska were omitted. Table 1 

presents some summary statistics after making these deletions. We also include fixed 

effects for each county to capture any persistent differences across counties such as 

                                                  
1 Our results are similar using separate estimations for each type of crime, although some crimes, such as 
murder, do not work as well because of considerably lower means.  
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reporting tendencies. This is one of Levitt’s (1998) main concerns with UCR data, which 

notes reporting tendencies and how crimes are classified are not equal across areas. 

County-level fixed effects alleviate this concern assuming these problems are time-

invariant. Yearly dummy variables are included to account for national trends affecting 

crime not captured by the other independent variables.  

 There are separate estimations for property and violent crime using the same 

explanatory variables. Within each type of crime, there are separate estimations for each 

proxy of wealth (median income and poverty rate) because of their high correlation. This 

creates four estimations; one for each crime-wealth combination. Finally, Breusch-Pagan 

(BP) tests indicate that all four crime-wealth estimations are hetroskedastic. However, the 

form of hetroskedasticity is too difficult to model with feasible generalized least squares, 

and the results include the White standard error corrections. 

Property Crime Results  

Table 2 presents some estimation results for five different model specifications of 

the property crime-median income model. With the exception of the best fit model 

presented at Table 4, all other estimates are suppressed for brevity but are available upon 

request. In general, the specification choice has little impact on the other estimates. 

Using the adjusted r-squared, the linear, linear-log, and quadratic models have 

similar explanatory power. However, only the linear and quadratic models produce 

statistically significant effects of median income. Since the difference between these two 

models is the statistically significant second-order term, we believe the quadratic 

provides the best fit for the relationship between property crime and median income.  

Based on the estimates, the marginal effect of median income on property crime is 
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Setting the above equal to zero, the level of median income where the marginal effect on 

crime changes from positive to negative is about $41,260. For counties with median 

income above $41,260 (about 48% of the counties), the marginal effect of median income 

is negative, which is the sign that is expected from past empirical work. However, the 

effect of median income on crime is positive for the remaining 52% of the counties. 

Figure 1 illustrates this relationship.  

Table 3 presents model specifications for the property crime-poverty rate model. 

These results are similar to Table 2. The adjusted r-squared again suggests the linear, 

linear-log, and quadratic models have similar explanatory power. Although none of the 

estimates are statistically significant, the quadratic has by far the lowest p-values.2 For 

this reason, we believe the quadratic produces the best fit of the relationship between 

poverty and property crime.  

Although the estimates are outside of what most consider statistically significant, 

the estimated marginal effect of the poverty rate on property crime is 

poverty
poverty

procrime )656.1(2302.42
)(
)(

−+=
∂
∂

 

Setting the above equal to zero, the level of poverty where the marginal effect changes 

from positive to negative is about 12.75%. For counties with poverty below 12.75% 

(about 63% of the counties), the marginal effect of poverty is positive, leaving 

approximately 37% of counties with higher poverty rates with the opposite sign. Figure 2 

                                                  
2 It is not surprising the effect of poverty rates do not fit as well compared to the effect of median income. 
Most theoretical models motivate the decision to commit crime using income, and the poverty rate is a 
transformation of the income level. 
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illustrates this relationship.  

 Although the percentage of counties with the unexpected effect of wealth is 

different (52% and 37%), these results are compatible because the relationship between 

median income and poverty is non-linear. Median income and poverty rates are highly 

correlated, and the best fit regression of this relationship is linear-log. Below is the result 

of this estimation, with standard errors in parentheses.  

)13.476()79.197(
01.195,97)ln(91.867,22 +−= povertymedianinc                              (1)  

The r-squared of this regression is .7539. At the threshold of poverty rate 12.75% the 

predicted median income is $38,984, which is close to the median income threshold 

$41,260. Further, 37% of counties have median income less than $38,984, which is the 

same percentage of counties below the poverty rate threshold. 

 Table 4 presents the estimates and standard errors from the quadratic fit of the 

property crime-median income and property crime-poverty rate estimations. All estimates 

are included except for the fixed effect controls for each county. Given controls for 

wealth and dummy variables for each year and county, most of the remaining estimates 

are statistically insignificant. The main exception is the percent of females in a county, 

which has a positive and statistically significant effect on property crime.  

 In general, both of these models indicate the negative effect of wealth that is 

common in the empirical literature does not apply to poorer counties. In fact, these 

models predict that an increase in wealth in a poorer county should increase crime. While 

this is not intuitive, it is consistent with the theoretical literature under a set of 

assumptions. Using Ehlrich’s theoretical models, this unexpected effect of wealth 

on crime can occur if an increase in wealth raises expected returns to crime faster than 
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foregone wages in poorer counties. Alternatively, this result could also be a byproduct of 

the UCR data which does not include unreported crimes.  

 Violent Crime Results 

Although the theoretical models are better fit for property crimes than violent 

crimes, several studies estimate the determinants of violent crime. For example, Kelly 

(2000) studies the impact of police expenditures and inequality on violent crime and finds 

“violent crime is little affected by police activity or poverty but strongly affected by 

inequality, measured either by income or education.” Other papers note that some violent 

crimes are committed for pecuniary gain. Fajnzylber and Lederman (2002) note that 

“homicides are also committed for profit-seeking motives”, and find average income and 

education attainment have significant and negative effects on violent crime. Although it is 

difficult to model violent crime, there is established empirical connection between violent 

crime and wealth.  

Table 5 presents some estimation results for five different model specifications 

of the violent crime-median income model. The linear, linear-log, and quadratic models 

again provide the highest adjusted r-squared values, but the quadratic has by far the 

lowest p-values.  

Although the quadratic estimates are statistically insignificant, the estimated 

marginal effect of median income on violent crime is  

medianinc
medianinc
viocrime )10*80.4(200553.0

)(
)( 8−−+=

∂
∂

 

Setting the above equal to zero, the threshold of median income where the marginal effect 

changes from positive to negative is about $57,556. In other words, counties with median 

income below $57,556 (about 89% of the counties) have a positive marginal effect of 
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median income. Counties with median income above $57,556 (about 11% of the 

counties), have a negative marginal effect of median income. Figure 3 illustrates this 

relationship. 

Table 6 presents the model specification tests for the violent crime-poverty rate 

model. The results are very similar to the violent crime-median income specification tests 

in Table 5, except the log-log and quadratic models provide statistically significant effects 

of the poverty rate. Since the adjusted r-squared is higher in the quadratic model, we 

consider the quadratic to be the best fit.  

Based on the estimates, the marginal effect of poverty on violent crime is 

poverty
poverty

viocrime )583.0(2267.15
)(
)(

−+=
∂
∂

 

Setting the above equal to zero, the threshold of poverty level of poverty where the 

marginal effect changes from positive to negative is about 13.09%. For counties with 

poverty below 13.09% (about 70% of the counties), the marginal effect of poverty is 

positive. This leaves approximately 30% of counties where higher poverty rates 

correspond with less violent crime. Figure 4 illustrates this relationship.  

Similar to the property crime models, the percent of counties with the unexpected 

effect of wealth is different (89% and 30%) in the violent crime results. In order to test 

whether these are compatible, we use the empirical relationship between median income 

and poverty at equation (1). At the threshold of poverty rate 13.09%, the predicted 

median income is $38,360, which is not close to the median income threshold $57,556. 

This incompatibility is probably caused by the weaker theoretical relationship between 

violent crime and wealth. Nevertheless, this does not change our main results that wealth 

has a quadratic effect on violent crime.  
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Table 7 presents the estimates and standard errors from the quadratic fit of the 

violent crime-median income and violent crime-poverty rate estimations. All estimates 

are included except for the fixed effect controls for each county. As in the property crime 

models, most of the estimates are statistically insignificant which is probably because 

wealth, county-specific, and year-specific effects are included in the model. The 

exceptions are the percent of females and Asians. Females have a positive and 

statistically significant effect on violent crime, while Asians have a negative and 

statistically significant effect.  

Conclusion 

 Many social factors affect both property and violent crime. Although theoretical 

models suggest an ambiguous effect of wealth on crime, the empirical literature usually 

estimates a monotonic effect. After testing several specifications of the crime-wealth 

relationship, we find that a quadratic model fits best. This quadratic result exists even in 

the presence of controls for county-specific fixed effects, year dummies, and controls for 

age, sex, and race/ethnicity distribution.  

 In general, wealth has a negative effect on crime for rich counties and a positive 

effect on crime for poor counties. This means the negative relationship that is typically 

found in the empirical literature only applies to wealthy counties. In poor counties, the 

opposite occurs: an increase in wealth in these counties has a positive effect on crime. As 

stated earlier, this result is consistent with Ehrlich’s theory only under a set of restrictive 

assumptions. Namely an increase in wealth raises expected returns to crime faster than 

foregone wages in poorer counties and vice versa in wealthy counties. It is difficult to 

reconcile why this would occur. One possibility is that an increase in median wealth may 
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be coupled with an increase in inequality. An extreme example is when income increases 

for only the wealthiest in a county, making them more profitable targets while leaving 

foregone wages for everyone else constant. The other explanation for this result is that 

UCR data only include reported crime. This aspect of UCR data has been noted in the 

literature, and our quadratic effect may be another unintended byproduct of omitting 

unreported crimes. We hope that future research is dedicated to determining whether this 

quadratic effect is a byproduct of theory (i.e., foregone wages changing at a different rate 

than expected return) or using only reported crimes.  

 As the empirical explanations of crime continue to develop, it is likely that UCR 

data will continue to be the main data set. Our main concern is that the quadratic effect of 

crime will continue to be ignored which will produce misleading results. This is 

particularly problematic for those that analyze the effect of crime reduction policies in 

poorer areas, such as encouraging high school completion. It is likely that such a policy 

would increase reported crime, which is the opposite of the intended effect. 
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Table 1: UCR data summary 
Variable Mean 

(Standard Deviation) 
Violent Crime (per 100,000 people) 355.84 

(374.43) 
Property Crime (per 100,000 people) 3,178.14 

(1,560.68) 
Median Income $42,913 

($10,578) 
Poverty Rate 11.61% 

(4.50%) 
 % White 85.01% 
% Black 10.26% 
% Asian 2.14% 

% Hispanic 7.97% 
% Female 50.78% 

% under 14 years old 20.53% 
% between 15 and 29 years old 21.10% 
% between 30 and 49 years old 29.37% 

% older than 50 years old 27.40% 
 
Note: All summary statistics are from 4,635 county-years between 2000 and 2004.  
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Table 2: Property Crime & Median Income Model Comparison 
 

Model adjusted 
r-squared 

Variable coefficient 
(standard 

error) 

p-value 

linear 0.9123 median income -0.0211 
(0.0097) 

0.030 

log-linear 0.7955 median income -5.88e-06 
(7.01e-06) 

0.402 

log-log 0.7954 ln(median income) -0.0553 
(0.3045) 

0.856 

linear-log 0.9122 ln(median income) -174.686 
(514.752) 

0.734 

quadratic 0.9125 median income 0.0667 
(0.0320) 

0.038 

  median income 
squared 

-8.08e-07 
(2.51e-07) 

0.001 

 

Figure 1: Predicted Effect of Median Income on Property Crime  
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Table 3: Property Crime & Poverty Model Comparison 

Model adjusted 
r-squared 

Variable coefficient 
(standard 

error) 

p-value 

linear 0.9122 poverty rate -7.272 
(17.0316) 

0.669 

log-linear 0.7955 poverty rate 0.00343 
(0.00804) 

0.670 

log-log 0.7955 ln(poverty rate) 0.0786 
(0.0857) 

0.359 

linear-log 0.9122 ln(poverty rate) 5.671 
(156.199) 

0.971 

quadratic 0.9123 poverty rate 42.302 
(31.896) 

0.185 

  poverty rate 
squared 

-1.656 
(1.0642) 

0.119 

 

Figure 2: Predicted Effect of Poverty Rate on Property Crime 
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Table 4: Property Crime Quadratic Model 

Variable Coefficient 
(Standard Error) 

p-value Variable Coefficient 
(Standard Error) 

p-value 

Median income 0.0667 
(0.0320) 

0.038 Poverty rate 42.302 
(31.896) 

0.185 

Median income 
squared 

-8.08e-07 
(2.51e-07) 

0.001 Poverty rate 
squared 

-1.659 
(1.064) 

0.119 

% Black -18.523 
(27.332) 

0.498 % Black -25.463 
(27.932) 

0.362 

% Asian -61.757 
(43.736) 

0.158 % Asian -116.374 
(41.621) 

0.005 

% Hispanic 38.674 
(34.673) 

0.408 % Hispanic 22.706 
(35.935) 

0.528 

% Female 322.624 
(84.270) 

<0.001 % Female 291.432 
(85.363) 

0.001 

% between ages 
15 and 29 

65.642 
(32.316) 

0.042 % between ages 
15 and 29 

32.479 
(32.004) 

0.310 

% between ages 
30 and 49 

91.320 
(64.787) 

0.159 % between ages 
30 and 49 

67.811 
(65.172) 

0.298 

% between over 
age 50 

30.543 
(40.053) 

0.446 % between over 
age 50 

-1.357 
(40.240) 

0.973 

2001 dummy 92.249 
(20.444) 

<0.001 2001 dummy 100.643 
(26.542) 

<0.001 

2002 dummy 108.816 
(33.325) 

0.001 2002 dummy 125.029 
(34.570) 

<0.001 

2003 dummy 68.087 
(47.568) 

0.152 2003 dummy 94.141 
(47.207) 

0.046 

2004 dummy 111.655 
(69.281) 

0.107 2004 dummy 142.395 
(60.447) 

0.019 

constant -19,257 
(6,052) 

0.001 constant -14,153 
6,219 

0.023 
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Table 5: Violent Crime & Median Income Model Comparison 

Model adjusted 
r-squared 

Variable coefficient 
(standard 

error) 

p-value 

linear 0.9389 median income 0.000324 
(0.00145) 

0.828 

log-linear 0.8888 median income -3.02e-06 
(6.41e-06) 

0.637 

log-log 0.8888 ln(median 
income) 

-0.1146 
(0.2966) 

0.699 

linear-log 0.9389 ln(median 
income) 

38.749 
(81.248) 

0.633 

quadratic 0.9389 median income 0.00553 
(0.00508) 

0.277 

  median income 
squared 

-4.80e-08 
(3.95e-08) 

0.225 

 

Figure 3: Predicted Effect of Median Income on Violent Crime 
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Table 6: Violent Crime & Poverty Model Comparison 

Model adjusted 
r-squared 

Variable coefficient 
(standard 

error) 

p-value 

linear 0.9389 poverty rate -2.196 
(2.395) 

0.359 

log-linear 0.8888 poverty rate 0.000944 
(0.00873) 

0.914 

log-log 0.8889 ln(poverty rate) 0.1637 
(0.0929) 

0.078 

linear-log 0.9389 ln(poverty rate) 26.391 
(22.731) 

0.246 

quadratic 0.9392 poverty rate 15.267 
(5.974) 

0.011 

  poverty rate 
squared 

-0.583 
(0.209) 

0.005 

 

Figure 4: Predicted Effect of Poverty Rate on Violent Crime 
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Table 7: Violent Crime Quadratic Model 

Variable Coefficient 
(Standard Error) 

p-value Variable Coefficient 
(Standard Error) 

p-value 

Median income 0.00553 
(0.00508) 

0.277 Poverty rate 15.267 
(5.974) 

0.011 

Median income 
squared 

-4.80e-08 
(3.95e-08) 

0.225 Poverty rate 
squared 

-0.583 
(0.209) 

0.005 

% Black 3.668 
(3.378) 

0.278 % Black 2.625 
(3.405) 

0.441 

% Asian -14.491 
(6.028) 

0.016 % Asian -20.161 
(5.671) 

<0.001 

% Hispanic 1.373 
(3.903) 

0.725 % Hispanic 0.210 
(3.923) 

0.957 

% Female 33.411 
(9.673) 

0.001 % Female 32.750 
(9.814) 

0.001 

% between ages 
15 and 29 

2.927 
(4.968) 

0.556 % between ages 
15 and 29 

32.479 
(32.004) 

0.310 

% between ages 
30 and 49 

-4.797 
(9.789) 

0.624 % between ages 
30 and 49 

67.811 
(65.172) 

0.298 

% between over 
age 50 

2.952 
(6.120) 

0.630 % between over 
age 50 

-1.357 
(40.240) 

0.973 

2001 dummy 5.611 
(4.136) 

0.175 2001 dummy 5.788 
(4.111) 

0.159 

2002 dummy 1.179 
(5.144) 

0.819 2002 dummy 2.547 
(5.168) 

0.622 

2003 dummy -18.493 
(7.312) 

0.011 2003 dummy -16.028 
(7.022) 

0.023 

2004 dummy -16.113 
(10.415) 

0.122 2004 dummy -10.537 
(9.106) 

0.247 

constant -1,481 
(798) 

0.063 constant -1,136 
(789) 

0.150 
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