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I. Welierstrass Points on Riemann Surfaces (The Classical Case)

An important aspect of the study of Riemann surfaces is the definition of
meromorphic functions on these surfaces. With these functions comes a.wealth
of understandiﬁg about the nature of these mathematical objects. The idea of
a single-valued function is an important concept in complex analysis.
{Indeed, the property of being single-valued is an intfinsic part of the
modern definition of a function.) However, many of the functions encountered

in complex analysis are multi-valued. By this is meant:

Definition 1. A function f(z) is said to be multi-valued if for some z, f(z)

corresponds to more than one distinct value in the image space of f.

| For example, if we consider f:€ o4 € defined by f(z) = zl/z, then for any

z € C-{0}, f(z) = Jz takes on potentially two different values in the image

space, tJE. Every nonzero complex number z has two complex square roots.
8ince most of the theory behind (elementary) complex analysis is grounded in
the singlé-valued nature of a function on its domain, where the function
assumes but one image vaiue for every z in its domain, there developed the
need to find an appropriate space in which to define such functions. During
the early 1850's, the renowned mathematician Georg Friedrich Bernhard Riemann
realized that one could construct a multi-layered surface on which a
multi-valued function of a complex variable could be interpreted .as a
single-valued function. With this came the bhirth of the Riemann surface as a

complex analytical tool.

ﬁ
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As an example of this construction suppose we consider the function
above: f:€ o € defined by f(z) = zl/z. In C, the only point at which f is
single-valued is z = 0. At all other points, f is double-valued. In fact,

. ‘0
for z.¥ 0, we can write z = re1 where r > 0 and 0 < 8 < 2w, Then, f(2z) has

1/2 ie/2
1/2 in 172 1T ¢
two values: f(z) = z = (re "} = [r1/261(9+2n)/2 . Now beginning with
g = 0, if we let 2 increase to & = 27 about the origin, notice that the value
2 i
of £ at z goes from f(z) = rl/2 to f(z) = rl/ elﬂ. By traversing a circle
centered at the origin, we have obtained a second value of f at z. If we
allow & to increase again by 2m to @ = 4w, we obtain our original value of f
at z, i.e., f{(z) = rl/z. Thus, we must traverse a circle twice in the

counter-clockwise direction to obtain the same value of f at z at which we
began. On €, f is double-valued. To avoid this multi-valued nature of f, we
Fould restrict the domain of f by removing the nonpositive real axis:

D=C - {z|Imnz =0, Re z ¢ 0}. By doing this, a circle about the origin can
never bp completely traversed. On this new domain, wé-can define two branches
of f which are single-valued in D: fl(z) = r1/2 eis/z;.fz(z) = rl/ze(9+2ﬂ)/2.
On the othef hand, Riemann suggested that perhaps we should "trade" this
"complicated” (mﬁiti—valued) function on a "simple" domain for a "simple"
(single—valqed) function on a "complicated" domain. To construct this new
domain, he suggested that for each branch of f a copy of the domain on which
the branch is single-valued be taken. "Gluing" these pieces of the domain
appropriately along the removed rays, an n-layered surface is then formed

where n corresponds to the number of branches of f under consideration. In

this case, the resulting two-layered surface would look somewhat like:

Do
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iThis surface is formed by gluing the positive side of D0 to the negative side

»f Di’ and the positive side of D. to the negative side of DO.) The

1
.esulting surface, D, is called the Riemann surface of f(z) = z1/2. Oon this
I_1/2916/2 if z = Dy '
surface, D, f(z) = l 1/2 i6/2+im  if z € D is single-~valued as desired.
r e 1
2
'If we include the point at « in the domain of 21/ , the resulting surface is

wore easily visualized (see Fig 2.)..

acformms [
= —

a sphevc

Fig 2.

Keeping this example in mind, it becomes obvious-thgt the structure and
sroperties of the Riemann surface are intimately tied to the nature of these
Lulti—valued functions. Any théonetical understanding of the essence of these
surfaces begins with an understanding of the behavior of such functions
defined on the surface. Hence, it is the single-valued counterparts of
nulti-valued functions which become the objects of our interest. Notice that
a function'f:é -5 € defined on a compact Riemann surface S by f(p) = ZO € C for
all p € 8, i.e., a constant function on 8, is single-valued. It is easily
shown that every holomorphic function f£:5 5 € defined on a compact Riemann
surface S is a constant functjon. Therefore, every compact Riemann surface
does have single-valued constant functions associated with it. But, such
functions are not very interesting from the standpoint of: supplying
information about S. Rather, we would like to work with non-constant
meromorphic functions, i.e., functions whose singularities are no worse than a
finite number of poles. '~ Because the behavior of such functions varies on S,
they may provide insight into the theoretical foundations of Riemann surfaces

in a somewhat generalized form.
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Naturally, we may begin to wonder if there exist non-constant meromorphic
unctions on every Riemann surface. In 1851, Riemann himself supplied the

nswer:

heorem 1. (The Riemann Existence Theorem) Every Riemann surface § (including
11 non-compact surfaces, as well as compact) has a non-constant meromorphic

unction £ € K(S}, where K(S) is the field of all meromorphic functions on S.

his fact follows immediately from the proposition that if § is a Riemann

urface and Q,P € S, then there exists a meromorphic differential w S

P,Q .OII

thich has simple poles at P and Q, and no other poles, such that Res wP Q =
. P ’

-1 and Res wp Q = =71, In fact, such differentials exist for any P,Q € S.
Q tH

‘alking the ratio of wP,Q and QR,Q where P # R, wP,Q

ion-constant meromorphic function on S.

/

wR,Q' we obtain a

Although we now know of meromorphic functions defined on a Riemann
jurface which possess poles as singularities and no other types of
;inguiarity, ét the moment it is beyond our means to specify at which points
:hese poles exist. Because we know that there do not exist nonconstant
1wlomorphic functions on a compact Riemann surface, our choices of such poles
ire not completely arhitrary. Nonconstant functions on a compact Riemann
surface must have at least one pole. What freedom do we enjoy in specifying
the locations of poles? To facilitate the investigation of this query, we
wst introduce some new notation,

If in local coordinates about P € S the analytic function f has a series

zn+1
n+l

. at_P, written ordp(f) = n, Sometimes this is also referred to as. the

. n .
;XDan31on f(z) = a z + a o, (an # 0), we say that n is the order of
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valuation of f at P. If £ = 0, we define ord (f) = + &, TUnder coordinate
— Z

changes in S, ordz(f) is invariant. Moreover,

= . > i f .
ordz(flfz) ordz(fl)+0rdz(f2), and ordz(f1+f2) > m1n{ordz(f1),ordz( 2)}

Likewise, for an analytic differential %@, which appears locally at P € § as

n n+1

= voo ; # 0, order of w at P i ,

5 (anz toa 2z + Ydz a, 0 Vwe say the is n
written ordz(w) = n.

Our goal is to specify the locations Pl""’Pk and associated orders

nl,...,nk of poles for nonconstant meromorphic functions in §. To help "keep

track” of these points, we define:

k

Definition 2. A divisor D is a formal expression of the form D = Z niPi =
i=1

anl +...+ nkPR. " (We adopt this notation to emphasize the fact that this sum

does not refer to addition and scalar multiplication in €.) The order of D at

k .
P. is n,. The degree of D is the integer £ n..
i i . jo1 L

F)

Because a meromorphic function on a compact Riemann surface S with f £ 0

has only finitely many zeros and poles, we can discuss what is meant by the

divisor of f. Since f has only a finite number of zeros Pl,...,Pg with
associated multiplicities nl,...ne, we define the divisor of zeros of f to be
e -
(f)0 = Z niPi. Likewise, for the finite number of poles of f, Ql""'Qk
i=1 :
with respective orders ml,...,mk, we define the divisor of poles of f to be
k
I(f)oo = ‘21 ijj' Then, the d;visor of £ is given by (f) = (f)0 - (D), =
1=
£ k
Z niPi - Zm,Q,. With this, then, we have found a compact manner in which
Jj=1 =1
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A brief glance at this simple

0o specify the poles and zeros of a function.
xpression indicates to us exactly where the singularities and zeros of f fall
m S. Later, such information will prove very helpful in our study of the

iature of such functions on a given surface S.

xample 1. On the compact Riemann sphere, Z, one example of a meromorphic

‘unction on Z is:

'wo of the zeros of f occur where the numerator is zero:

22 12+1=0; (z-{-1/2+/3/21))(2-(1/2-/3/21))=0; z=-1/2+/3/2i, -1/2-/3/21i.

\1so, the poles of f occur where z3 - 322 = 0; 22(2—3) = O, The poles are:

: = 0 (mult 2), z=3 (simple pole). What happens at «? Suppose we change

a

oordinates to w = 1/z. Then,

(1/w2) + (1/w) + 11 W+ We + WO
f(w) = =
2 _
L(1/W)3 - 3(1/w)" | 1 - 3w
fotice that at w = 0, f(w) has a simple zero. This implies that at z = ¢,

{(z) also has a simple zero. Using all this information, we obtain:

] (£)g = P_y/0sjijes * Pot/a-vasey * Fo .

(), 2-P0 + P3
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(hus. (£) = {0y = () = Py/ararei * Poaja-dajas ¥ P = (3P * Pyl

¢here for ¢ = 0, 3, -1/2 + J3/2i, -1/2 - J3/2i, P, represents the point c.
The .-reason for such notation is that the divisor of a function dis a formal sum
T niPi in which the coefficient ni is not to be multiplied by the point Pi'
to obtain a complex number. In other words, the divisor of a function is not
a3 complex number. Rather, the divisor is a notational device which allows us
to catalogue the zeros and poles and their multiplicities.

Since divisors are so convenient for a discussion of the zeros and poles
3f a meromorphic function, we would hope that such an entity would alsq exist
for meromorphic differentials from which are derived the meromorphic
functions. Indeed, we can also speak of the divisor of an abelian
iifferential w(# 0) on S. In fact, the definition of this divisor parallels
that for the meromorphic functions. Suppose that w is an abelian differential

o S, w # 0, which has zeros Pl""Pe with multiplicities n N, and poles

10

21,...,Qk of respective orders Myse sy . Then, similar to the previous

development for f, we define:

=]
lav)

1) the divisor of zeros of w: (w)0

[
b Mo
[

El

=
fo
. i

2) the divisor of poles of &: (h‘a)Qo =

<
|
—
[
[

3) the divisor of &: (W) = (&)

For example, suppose S = Z and let w be an abelian differential on S.

Locally, we can express ® as W f(z)dz where f(z) is a meromorphic function

on S and hence has a finite number of zeros and poles in S. From above, we
can determine the divisor {f) of f. However, while the zeros and poles of f do

contribute to those of w, these do not constitute the only poles of w.. We
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ust also consider the behavior of dz at &, {The behavior of f at & has
lready been considered in (f)). If we change coordinates, letting w = 1/z,
e obtain dz = d{1/w) = - (1/w2)dw. At w = 0, corresponding to z = %, dz =

(1/w) has a pole of order 2. Thus, in fact w has an additional pole of order
'at %, as well as the zeros and poles of f. (Note: if f has a zero of some
rder at <, the pole at « may indeed be removable. On the other hand, if f
as a pcle at «, the order of the pole at « of w may be greater than 2.} In
ny case, we get (w) = (f) - 2pP,,.

Before proceeding any further with a discussion of divisors as they

elate to functions and differentials on 8, a little more information about

k
eneral divisors must be presented. Given any two divisors D1 = X niPi and
: . i=1
€
= Z m.Q., we have the following:
2 ing 404
J_
acts
k (4
a) The sum of two divisors is defined by: D,+D, = Z n,P. + Z m.Q,.
s 1 2 . i1 . J]
i=]1 Jj=1
oreo#er, we specify that D1 + D2 = D2 + D1' making this operation
ommutative.

b} If P, = Q, for some i,j, then n.P, + m .
i J . ii i

= n,P, + m,P
Q J

. . = (n, + m,)P,.
J 11 1 jii

J

{Thus, in the previcus definition of {w) for § = £, if (f) has a zero of
ultiplicity n at «, it has a term nP_. Then, (w) = (f)—23m= ({f)—nﬁm) +
n—Z)Rm. If n=2, the zero and pole at = both cancel. However, if n > 2, a
erc at « remains of lesser multiplicity while the pole disappears. Fiﬁally,

f n< 2, the pole at 2 is reduced in order and the zerc at ¢« is removed.)

c} If ni=0 for all i, we define D1=0. Then, deg{Dl) = 0,

k
d) =D, = - Z n,P, which is the same as 0-D, = X OR, - Zn_P, = -Zn,P,.
1 i=1 i'i 1 J ii ii
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k e
e) This implies that: Dl— D2 = ZnP, - Zn.Q..

=t ¥t j=1 Y

deg(Dl) * deg(Dz)

It

f} deg(D1 + D2)

]

g) deg(D1 - Dz) deg(Dl) - deg(Dz)

k
h) We say that a divisor D, = Z n_ P, is gffective (or integral) if

1 i=1 ii
n, > 0 for all i=1,...,k, and we write D1 > 0,
i) For two meromorphic functions f1 and f2 on a Riemann surface S,
(f1)+(f2) = (flfz).
j) If f is a meromorphic function (#0) on § and & is an abelian

differential (#0) on §, (fw) = (f} + (w).

k) If £ = ¢ (a nonzero constant), then (f} = 0.

Considering the above discussion, and recalling a few facts from abstract
algebra, it becomes obvious that the set of all divisors Div(S) forms a

commutative group.

On a compact Riemann surface S, it is known that a meromorphic function

defined oh 5 has the same number of zeros as it has poles, counting

k e k
s 1s e . - B - _ 5 p -
multiplicities. Hence, if (f) (f)0 (f)Oo Z nl,Pi Z ijj’ then Z ni
i=1 ' j=1 i=1
é k (4
Z mj. Therefore, deg(f) = Z n, - Z m, = 0 for any meromorphic function f
Jj=1 i=1 j=1

on S. Obviously not every divisor is a divisor of a meromorphic function on
S. Specifically, such divisors must be of degree zero. Suppose we consider
the subset {(f}} of Div(S) consisting of the divisors of merdmorphic functions

of 5§, and the subset Divo(s) = {D|degD=0}. Then, {(f)} is a subset of

DivO(S}. Moreover,
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‘ 0
wpoponition 1: The subsets {(f)} and Div {S) of the group Div(S) of all

jivisors of S both form subgroups of Div(S).

Looking back on all that has come to pass thus far, given any meromorphic
‘unction or differential on S, we now have a way of neatly organizing the-
:eros and poles of these entities, the points of interest in a discussion of
‘functions on a Riemann surface. While this is quite useful in itself, we
itill have not reached the goal of being able to determine when a function
till exist on a Riemann surface which possesses zeros or poles at the points
i f our specification, or if any such functions can in fact be found. In
varticular, we would like to discover if, given any divisor D, there exist
‘unctions defined on S whose divisors satisfy (f) + D > 0. It is in this
rase that f will possess zeros at least at the points where the coefficient of

) is < 0 and poles at most at the points where the coefficient of D is > O.

Jefinition 3: Let D

z niPi, Pi € S be any arbitrary divisor. We define L(D)
: {f & K(S)[(f) + D> 0}u {f =0}, the set of all meromorphic functions on $S

shose divisors are "bounded by D".

jotice that if D is an effective divisor, (f) + D is effective (20) if and
snly if D "cancels" the poles of f, i.e., if and only if f has poles of orders
n, at the points Pi and no other singularities, In this case, L(D) is

!Xactly the set of meromorphic functions with poles bounded by D. Moreaver:

?nonogjtjon 2: Let S bg any compact Riemann surface and let D = 2 ijj be an

bffective divisor on S. Then L(D) is a vector space with field of scalars C.
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orgof: First, notice that the set of meromorphic functions defined on a
-ompact Riemann surface S, K(S), is a vector space under the usual operations
5f addition of functions and multiplication of functions by a scalar. If we
sonsider L{D), then L(D} is a subset of K(S). To see that L(D} is a vector
space itself, we need only show that L(D) is a subspace of K(S). This
involves establishing that given any two f,g € L(D) and any ¢ € €, then
cf+g & L(D).

Consider the Laurent expansions of f and g at Qj in D for each j. Since
F & L(D), £ has a pole of order ¢ mj at Qj' Thus, if z is a local coordinate

5.t. 2 = 0 corresponds to Qj’ then

'mj mj_
£f{z) = a_. / z + - a_(m / z
: J Jj-1

+ higher order terms (h.o.t.)

A similar situation holds for g at Qj:

Then we have:

(cf+g)

It
O
‘_h
[n]

+

]
[n]
e
Il
| e |
Ie}
fu
|
s
N
[
+
]
)
l

+ h.o.t.

1§
—
o
)
+
o
S’
~
N
fte
+
—
o
=
+
=2
—
~
N
-

Therefore, cf+g has a pole of order < mj at z=0, which corresponds to Q.




Page 12
gince Qj was arbitrarily chosen in D, this implies that ef+g ¢ L(D)}. O

On the other hand, suppose that D has sqme terms with negative
soefficients (say -niPi with n, > 0}. Then, the defining condition (f)'+ D >
y of L(D) implies that f € L(D) has zeros of order at least n, at Pi' Also,
;he'poles of f are bounded by the terms with positive coefficients in D.

Knowing that L(D) is a vector space, we can discuss the notion of the

iimension of L(D).

Jefinition: With notation as above, we denote by dim(L{D}) the dimension of
the vector space L({D). This refers to the number of linearly independent

functions in L{D) over the complex numbers C.

éxgmnlg_z: Suppose D = 0. Then, f € L(D} wou;d have to satisfy (f) + 0 = (f)
* 0. In other wﬁrds, (f) would have to be an effective divisor, which implies
that f would possess possibly some zeros, but no poles. However, we saw that
m a compact‘Riemann surface, such a function is just a constant function.
Pherefore,'L(D) is the vector space of complex numbers, L{0} = Span{1}, and
dim(L(0)) = 1.

Moreover, if D is a divisor s.t. deg{(D) < 0, this implies that the sum of
;he absolute value of the coefficients of the negative terms exceeds that of
&he positive terms. In order for a function f to be an element of L{D), then,
f would be required to have more zeros than poles (counting multiplicities).
?aying this slightly differently, deg((f)) would have to exceed 0. But,
éeg((f))=0 since f is defined on §. Thus, for a divisor D s.t. deg(D) < 0,
L{D) must contain no functions, i.e., L{D) = o.

i Because a divisor of a meromorphic differential on § can be specified, it
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Luld seem logical that a space similar to L(D) would exist for differentials.
n fact, we have:
k

pfipitien 4: Let D = Z niPi, Pi € S be an arbitrary divisor on S. We define
i=1

(p) = {meromorphic differentials w on § | (w) + D » 0}.

poposition 8: If D = Z niPi is an effective divisor on S, then (D) is a

ector space over the field of scalars €.

roof: The proof of this proposition is analogous to the proof given for

roposition 2. O

bfinitien B: By the index of speciality of a divisor D, denoted i[D], we mean

he dimension of the space @(-D}.

Recall that in the case of D = 0, L(0) = Span{l)} and dim(L{(0)) = 1. In
his situation; then, what is 2{(0) and dim(s2(0})}? Before this can be answered

n its entirety, we need the following:

hggggﬂL_g: Every compact orientable surface (e.g. a Riemann surface} is
épresented by a polygon with edge symbol either:

1) empty, g = 0; or

-1, -1 -1. -1 -1. -1
2) albla1 b."a_b_a b2 b

e . b
1 222 g gag g

'he number g is known as the genus of the surface.

i g—holﬂd 'I'OVUG L1
Fig. 3
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With this definition of genus, we have:

- el
Egggﬁsitiﬁn 4: (0} = ¥ (8}, the space of holomorphic abelian differentials,

and thus if0] = g, the genus of S.

proof: From the definition, we have 2{0) = {w!w is an abelian differential,
(w) + 0 = (W) > 0}. Thus, {Z(0) consists of the abelian differgntials with

{w) > 0, i.e., whose divisor is effective. However, this implieé that

w € 2{0) has possibly zeros, but no poles. Therefore, w is a holomorphic
differential and %(0) < Hl(s). On the other hand, if w € xl(S), then w has no
poles and (w) is effective. Thus, w € 2(0} and ul(S) c 2(0). Since we have
both inclusions, we have equality: 2(0) = El(S). Moreover, since dim HI(S)=g
({12,1I1.2.7]) this implies dim((0)} = i[0] = g. D

|

There is an intere#ting and quite useful relationship which exists between the

dimensions of these two spaces:

Theorem 3: If w is any abelian differential, w # 0, then i{D] = dim(L{(w)-D))

for any divisor D.

Egggf: We begin by constructing two isomorphisms which are inverses of each
?other.

y

If f € L{{w) - D), then (f) + (w) - D > 0, i.e. (fw) - D > 0. - This
implies that fw € 2(-D). Conversely, if W is a non-zero differential of the
first kind on S, and 7 is a meromorphic differential in {(-D), then #/& = f

lis an element of K(S) and (f) + (@) - D = () - @) + (@) -D = (g) -D 2 0.

iHence, f € L((w) - D). Thus, we have constructed two isomorphisms:
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1) R(-D) ———— L((®) - D)
7 —_— /e =T
2) L{(w) - D) —— a(-D)
f —_—  fuw
thich are inverses of each other. Therefore, &(-D) is isomorphic to L{{)-D)

thich implies i[D] = dimcﬂ(—D) = dim(L((®) - D) as desired. 0O

In specifying the nature of the vector space L(D) and its dimension,
there D = Z niPi is an effective divisor of our own choosing, we have
issentially expressed the expectation of being able to discover the existence
yf nonconstant functions in K(8) possessing poles at Pi with multiplicities ¢
Y for each i. The essence of this lies in the ability to compute the
limension of L(D). If dim(L{D}} = 0 or 1 and D is effective, then L{D) is
hther empty or solely consists of the constant functions. Hence, we would
ike to establishra gimple procedure for determining the dimension of L(D).
'hen if we find that for our chosen D, dim{L{D)} > 2, we will have succeeded
in our task.

Armed with an understanding of the terminology presented thus far, we are
ow in the position to state "one of the cornerstones éf the theory of compact
liemann surfaces,”" ([8, p. 67]) which was supplied by Riemann and his pupil

loch during the 1860's.

hegrem 4: (Riemann—Roch) Let S be a compact Riemann surface of genus g.

iiven a divisor D, then dim(L(D)) = deg(D) + i[D] - g + 1.

Fggﬁ: For a detailed proof, I refer the reader [12, pp. 264-269]. O
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In the previous theorem it was established that for any abelian
jifferential w(# 0), i[D] = dimL((w)-D) giveh a divisor D. Using this fact,

-he result of the Riemann-Roch theorem can also be stated as:

dim(L{D)} = deg{D) + dim{(L((w)}-D}) - g + 1

i

yhere w is any abelian differential on S.

Hinting at its strength and importance, there are a number qf immediate
sonsequences which grow from both the statement and the proof of the
iemann-Roch theorem. As an intermediary step in the verification procedure,
in interesting relation emerges, the so-called Riemann Inequality: dim{L{D}) >

Jjeg(D) - g + 1 where D is an effective divisor. This indicates that if D

k N
rz niPi, the number of linearly.independent meromorphic functions defined on
i=1

A

5 with poles of -order at most n, at the k distinct points Pi is at

k

least Z ni—g+1. We may wonder for which D there are exactly deg(D) - g + 1
i=1 :

such functions on S. To answer this question we need the following result:

lheorem 5: For any abelian differential &, deg{{w)} = 2g-2.

raof: If g = 0, consider the differential dz expressed in the local
toordinate z. In the affine plane, dz is regular. Suppose we consider z = .
if we change coordinates to w = 1/z, this corresponds to w = 0. In this new
toordinate system we have dz = d(1/w) which has a double pole at «. Hence, dz
128 a double pole at & and deg((dz)) = -2. Reqall that any other differential
bn a surface of genus O is of the form w = f(z)dz where £ € K(S). Then,

@) = (f) + (dz). But, because f € K(S) and the genus of S is 0, we know that
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)
f£) = 0. Hence, (w) = (dz) and deg((w)) = deg({(dz)) for any abelian
ifferential » on §, which implies deg((w)) = -2 as desiréd.

Now assume g > 0, Then, the space of holomorphic differentials, R(0) has
jositive dimension. Let w € 2(0}. By the Riemann-Rech theorem we have:
i) dim(L((m))) - il(m}] = deg((®)) - g + 1
jut, recall that, taking @ =77, i[(m}] = dimL{(®)-(7)) = dimL(0) = 1 for some
ibelian differential wi{# 0). Also, this same theorem tells us that
im(L((m))) = i[0] = g. Therefore, (i) becomes g-1 = deg(m)-g+l, i.e., deg(m)

z 2g-2 . a
Having established this, we now can show that:
Iro tio : If deg(D) > 2g-2, then dim{L(D)) = deg(D) - g + 1.

droof: Notice that if deg{D) > 2g-2, then i[D] = O. In order for a
iifferential © to be in R(-D), it must be that (w) - D > 0, which implies that
leg(w) > deg(D} > 2g-2. But, the above theorem states that deg(w) = 2g-2,
leading to a contradiction. Using this, then, the Riemann-Roch then reads:

dim(L(D)) = deg(D)-g+1 as desired. O

Reasoning along the same line, we alsoc have:
Theorem 6: A function cannot have a single simple pole on a surface of genus

one (a torus).

?Iggf: From above, given any abelian differential w on a surface S of genus 1,
|
deg[{w)] = 2g-2 = 0. Thus, @ must have as many zeros as poles. (Note: if w

is of the first kind, or holomorphic, it has no poles and hente no zeros.)
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suppose we specify D=P, where P € S. We would like f € L(P} to have at most a
simple pole at P. Notice that deg(P) = 1 > 0 = 2g-2. Therefore, dim(L(P)) =
deg{P)-1+1 from the above theorem. In other words, dim{L(P)) = 1. Since the
get of constant functions is a 1-dimensional subspace of L{(D)}) for all
effective divisors D, this implies that L(P) = {constant functions on S}.

Thus, there are no nonconstant meromorphic functions in L{P), and no function
on S has a simple pole on §. O

With this, we know that for any P on a surface of genus 1, the only
functions in L(P) are the constant functions. Hence, dim{L(P}) = 1. Using
the Riemann-Roch formula, dim(L(P)} = deg(P) + i{P] - g + 1, we get:

1 =1+ ifP] - 1 + 1 which implies i[P] =0 <1 =g .

In fact, a similar result occurs on every compact Riemann surface of genus

g>0.

Theorem 7: If g > 0, there is no point P on S at which all differentials of

the first kind vanish, so that i[P] < g. (Recall: i[P} = dim{r{-P)).

Proof: Suppose on the contrary that for all & &£ il(S), ¢+ does wvanish at P.
Then, @ is a holomorphic abelian differential and, as in Proposition 4, 2(-P)
=%X'(8}. So, i[P] = g. By the Riemann-Roch theorem, this implies:

dim{(L(P)) = 1 + g — g + 1 = 2 and there exists a nonconstant mercomorphic
function f on S with a simple pole at P. Thus, f assumes every complex number
ES a value exactly once on S. . (It can be shown ([12, p. 176]) that a

Meromorphic function assumes every value the same number of times on a compact
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Eemann surface.) As a result, f defines a one-to-one holomorphic mapping f:8
z, which indicates that the genus of S is the same as that of the sphere,

.e., g=0. But, this is a contradiction, and the theorem therefore follows. O

By the Riemann Inequality, we saw that for an effective divisor D,
im(L{(D)} > deg(D} - g + 1, giving dim(L(D)) a lower bound. In fact, there is
nother relation which exists which indicates an upper bound fdr the size of

he space L{D).

heorem 8: If D is an effective divisor, then dim(L{(D)) ¢ deg(D)+1 with

quality holding if and only if g=0, the only case in which i[D] = g{(=0).

| On numerous previous occasions, we have encountered the situation in
thich i[D] = 0, where D is effective. In these cases, under the Riemann-Roch
heorem, dim(L(D)) = deg(D)-g+l. From this, we may begin to wonder exactly
that D looks like. Let's investigate.

Since D .is effective, we know that dim(L(D)) > 1, so that the
demann—Roch formula reads: (1) deg{(D) + i[D] - g > 0. Suppose we let D =
'1+...+Pn for distinct points of S, Pl""'Pn' Then, deg(D) = n and (1)
mplies: (2} i[D] > g-n. Notice that if n > g, i[D] must be 0. So, the only
hteresting case in this situation is where g » n. Assuming this, consider
IPI]. From Theorem 6 above, we saw that i[Pl] € g-1. This coupled with (2)
'[PI] > g-1 implies i[Pl} = g-1. Suppose now D = P1 + P2. We know ﬁ(—Pl—Pz)
59(~P1) and i[P1+P2] < i[Pl] = g-1. Moreover, if g ?> 2, then there exists at

€ast one differential ¥ in R(—Pl) which is not identically 0. Let
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12 be a point where ¥ does not vanish. We now have i[P1+P2] § g-2 , which

-ogether with (2) implies i[P1+P2] = g-2. Continuing in this same vein, for

sach n ¢ g, there exist n distinct points P ,P. on S such that

PRI

i{P1+...+Pn] = g-n. In particular, if n = g, there are g distinct points on §

;uch that i[P1+...+Pg] = 0. Using the Riemann-Roch formula,

dlm(L(P1+...+Pg)} = deg(P1+...+Pg) + 1[P1+...+Pg]—g + 1
=g+ 0-g+1

=1
And so, we have established,

‘heorem 9: It is possible to find g distinct points on a surface S of genus g
such that there does not exist any nonconstant meromorphic function on S whose

P

mly singularities are poles of order at most 1 at the points Pl""’ g

Throughout the previous proof, we considered only the situation in which
leg(D) < g. On the other hand, suppose deg(D} > g. By the Riemann
inequality, then, dim(L(D)) > deg(D)-g + 1 > g-g + 1 = 1, Hence, dim{(L{(D}} »

!. As a result:

mggggm_lg: When deg(D) > g, there do exist nonconstant meromorphic functions

in L{D).

We have seen that there are g points on a surface S of genus g such that

‘here are no nonconstant meromorphic functions on S with at most poles of
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erer 1 at thoée points. Suppose instead we begin with a single point P on S
and ask if there are nonconstant meromorphic functions such that one of these
functions has a pole of order n at P and no other singularities. Are there
certain integers ni such that there does not exist a nonconstant meromorphic
function in K{S) possessing as its only singularity a pole of order n, at P?
The answer to this query lies in the following theorem introduced by

Weierstrass during the late 1860's.

theorem 11: (The Weierstrass "Gap” Theorem). Let S have positive genus g, and
let P € S be arbitrary. There are precisely g integers 1=n1 < n, <...< n_< 2¢g
such that there does not exist a function f € K(S) holomorphic on $-{P} with a

j0le of order nj at P. (In other words, no meromorphic function exists having

3 pole of order nj at P as its only singularity.}

Before proving this theorem, there are a few remarks to be made about

these integers. The numbers nl,...,ng are called the Weierstrass gaps (or
just the “"gaps") at the point P, The complement of this set in Z,
b{nl,...,ﬁg} = T is the set of "non-gaps" at P. It is clear that T is a

rommutative semi-group under addition of integers. Since 0 is not a "gap," O
T and hence T has an identity element. Moreover, the sum of "non-gaps" is a

'nongap ., " To see this, let dl and dz be two “nongaps”™ of P. Then, there

Xist two functions f1 and f2 in K{($} such that fi has as its only singularity

! pole of order ai at P.. Then, flf2 has a pole of order «, + «, at P. Hence

1 2
H + az is again a "nongap."

Consider the integers {1,...,2g}. Within this set, there are g "gaps."
‘his implies that there are g "non-gaps" in this set also. Notice that 1 is

llways a "gap" on a compact Riemann surface, and 2g is always a "non-gap."
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First, to see that 2g is always a "non-gap," consider: From the

piemann-Roch theorem we have:
dim{(L(2gP)) = deg(2gP) - g + 1 + dimL({®) - 2gP)

Now, deg(®) = 2g-2 for any abelian differential w. Hence, @ can have at most
a zero of order 2g-2 at P. In other words, it cannot have a zero of. order 2g

at P. Hence, dimL({w)-2gP) = 0 and we have:
dim(L{2gP)) = 2g - g + 1 =g + 1,

If g > 1, then dim{L{2gP)} » 2 and there exists a meromorphic function on §
with a pole of order 2g at P. Thus, 2g is a "non-gap."

Now the claim is that 1 is always a gap. To see this, recall from the
discussion preceeding Theorem 8, we found that i[P] = g-1. So, by the
Riemann-Roch formula, dim(L(P)) = 1 - g + 1 + g -1 = 1. Therefore, the only
functions in L{(P) are the constant functions. In other words, there are no
twnconstanf meromorphic functions on § with a simple pole at P as its only
singularity, and hence n=1 is a "gap" for any P. The g "non-gaps" in this set
are known as the first g "non-gaps" in the semi-group T of non-gaps.

Remember that on the Riemann sphere, whose genus is g = 0, one can always
find a function with a simple pole at a specific point. Hence, there are no
"gaps" on Z. In this case, the results of the Weierstrass “Gap" theorem

follow trivially.

~

&EQL of the Weierstrass "gap" Theorem: Let P be an arbitrary point on the

Riemann surface S. For D = P, we have seen that dim{L(P)}) = 1 = dim(L(0)), so
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'1 is a "gap".

In the general case, consider the transition from D = (n-1)}P to D = nP,
pirst, notice that dim(L({n-1)}P)) = (n-1)+i[(n-1}P]-g+1 = n-g+i[(n-1)P] while
dim(L(nP)) = n+i[nP]-g+1. If i[D] remains unchanged under this transition,
i.e., if i[(n-1)P] = i[nP], then dim(L(nP)) = n+i[(n-1)Pl-g¢l =
dim(L{(n-1)P)+1. Hence, with this, fhere is a function f in L(nP), but not in

L{{n-1}P). 1In other words, there exists a function on S which has as its only

singularity a pole of order n at P. On the other hand, if wunder this
transition i[nP] = i[{n-1)P]-1, then dim(L(nP)) = n+i[{n-1)P]-1-g+1 =
n+i[{(n-1)P]-g = dim(L({n-1)P)). Thus, here there is no function which is

regular on S-{P} and possesses a pole of order n at P.

We may ask: How often is a new function added in going from L{{(n-1)P} to
L{nP)? In other words, how often does i[nP] ‘remain invariant wunder the
'transition from D = (n-1)P to D = nP? The answer comes from a consideration
of the fact that i[0] = g, while i[P+...+P] = i[2gP] = 0. From this, we see
that i[nP] changes (decreasing in value by one each time) exactly g times.

Hence, there are exactly g values of n for which no meromorphic function

exists which possesses as its only singularity a pole at P of order n. 0O

Above, we were dealing with a single point on S. It is interesting to
note that there is a more general theorem, called the Noether "Gap" Theorem,
which indicates that the "gaps" can occur at n, distinct points on S, and not
solely at P. In fact, the Weierstrass "Gap" theorem is just a specific case
of this more general theorem. (For a discussion of the Noether "Gap" theorem,
the reader may consult (5, p. 79].)

[ It follows from the proof of this theorem that j > 1 is a "gap" at P € S
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hf and only if dim(L(jP)) - dim(L{{j-1)P)) = 0 if and only if i[(j-1)P] -
i[jP] = 1, i.e., if and only if there exists on $§ an abeiian differential of

the first kind with a zero of order j-1 at P. Thus, for S compact, the

possible orders of abelian differentials of the first kind at P are precisely:
O=n,-1 < n, - 1 <...< ng—l < 2g-2

where the nj's are the gaps at P. In fact, this says that given a point P on
a compact Riemann surface S of genus g > 0, then there exists an abelian
differential w of the rfirst kind (w € El(s)) that does not vanish at P.
Considering this closely, it becomes cobvious that this is just a restatement
of Theorem 7.

At this point, it is appropriate to enumerate a number of propositions,

}

stated in terms of the "non-gaps,

which allow us to say a bit more about the
nature of the ”gapé.”

Throughout the following propositions, let P € S be arbitrary and let
l<a, << qg = 2g be the first g "nonugaps" at P.

1

2g.

N

Proposition 6: For each integer j, 0 < j < g, we have dj + 8

Prepf: Suppose that dj + dg—j < 2g. Then, since the dj are ordered, if k < j,

the . . :
h] ak + aqu < 2g also S0, we have:

a, +a_ | < 2¢g

a, + 4 . < 2g

a. +ta_ . < 2g..
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i

ice that &, + & | is a nongap between & | and &« ., This is because the
otic K g-j gap g-] g

uym of nongaps is a nongap and dj > 0 for all j by assumption. From the above
ystem of inequalities, we have then that there are Jj nongaps between ag—j and
g Hence, we have a total of (# of nongaps from dl
rom ag—j to ag) + (1 nongap at dg) =g - 3j+ j + 1 = g + 1 nongaps,
pntradicting the fact that there are only g nongaps from 1 to 2g. Thus,

to d .) + (# nongaps
g_J) { gap

A4 . 2 2g. 0O
j g7 &

Knowing that al 2 gives us a way to explicitly state the first g

non—-gaps" at P.

ition 7: If &, = 2, thena, = 2j and &, +&_ ., = 2g for all j,
roposi 1 i j j g1 g j
| _
< j<eg.
rogf: If ay = 2, then 2,4,6,...,2g are g "non-gaps"” ¢ 2g, and hence these are

11 the "nongaps" ¢ 2g. To see this, if 2 is a nongap of P, then there exists
. meromorphic function which has a pole of order 2 at P. But, thenv

f(z))2 has a pole of order 4, and therefore 4 is a nongap. Continuing, in
eneral (f(z))n has a pole of order 2n, so 2n is a nongap for n € Z,
loreover, aj + a . =2j + 2(g-j) =2g for 0 < j < g. DO

g-]

What happens if ay > 27

Toposition 8: If dl > 2, then for some j with 0 < j < g, we have ajhag_j>2g.

i

Loof: From Proposition & we know that ag ra > 2g for all j, 0 < j < g.



Page 26

uppose for some j, 0 < j < g, a, +&
supp £ %5 " %y

largest integer < g. Then, a1,2a1....,[23/a1]a1 are "non-gaps" < 2g. (In the

= 2g. For any q € i, let [g] be the

proof of Proposition 7 we saw that integer multiples of "non-gaps" are
"non-gaps."} But, since o, > 2, i.e., &y > 3, [Zgﬁal] { 2g/3. So the above
account for at most 2g/3 < g "non-gaps" and there must be another "nongap" ¢
2g. Let « be the first "nongap” not appearing in our list. For some integer

p, 1 ¢ ¢ [Zg/al] < g we must have ra, < a < (r+1)ai. Therefore, the first

= 1
r+1 nqn—gaps are al, d2 = 2&1....,dr = ral,ar+1 = o, By our assumption that
L+ a . = 2g, this gives:
xJ e j E g
ag—l = 2gﬂd1,....dg_r = 2g - e, . dg_{r+1) = 2ga

For ag—l""’ag—(r+1)’ these are non-gaps ¢ 2g and > ag—(r+1)' Moregver, a >
l

o for all k, 0 < k £ r since « was chosen to be the first "non-gap" in our

1)

ag-(r+1) < ag—k for all k,

< . i i 1] ] LR S ] ? r y =y
b<k<r In addition, we can say that S IELN ST ag—(r+1) ag—l

enumeration. Hencé, 2ga < ag-hul which implies

are all the "nongaps" 2 and { 2g. To see this, suppose 8 was another

2 g (p+1)

nongap in the range « to 2g. Then, 2g-8 is a "non-gap." But, 2g-B is

g-(r+1)

in the range dl to dr+1 = &, and & was chosen as the first “nongap" not

appearing in our enumeration. Therefore, 2g-8 cannot be a "nongap” in this
range. This is a contradiction. So, there is no other "nongap" in the range
X
g-(r+1) to 2g.

With this, then, it follows that

; F Geo(re1) ~ &1 +2g -4 = 2g ~ (& - al)
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?ut, a < (r+1)a1 (from above) implies a-d, < s, . S0, & o+ ag-(r+1)
Zg-nglzzg_r. However, this gives a "non-gap” between gg—(r+1) and 2g, a
-ontradiction. So, our original assumption was false and aj +a . >22.0

Using these ideas, it is possible to establish a lower bound for the sum

yf the first g-1 "non-gaps" at P:

g-1
jgrallary 1: We have 7 aj > g(g-1), with equality if and only if a, = 2.
j=1

)ygef: Using proposition 6, summing both sides of the resulting inequality

rields:
g-1 g-1 g-1 ’
Z (x,+oa )2 I 2g=2g Z 1= 2g(g-1)
I j=1 J g-J j=1 i=1
ut,
g-1 !
ji1 (agrag y) = (gtag g)r(agra, p)v e olag gtap)r(ey 1+ey)
= 2@1 ¥ 2a2 +ee et 2ag_1
g-1
=2 Z «
j=1 7
g-1 g-1
hus, 2 2 «, ? 2g(g-1), which implies X o, » g(g-1)
j=1 J j=1 J

Now, if al = 2, then from Proposition 7 we have

b

8 desired. Q
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| g-1

Notice from Proposition 8, if Ql > 2, the corollary reads: Z Gj >
Jj=1

g(g—l), a strict inequality.
Within limits, we have been able to describe some of the characteristics
of the first g "non-gaps” at P. In fact, in conjunction with the Weierstrass.

'gap"” theorem, we have been able to somewhat characterize the nature of the

space L{gP). In particular, on a compact Riemann surface S of genus g, 1 is
ylways a gap. Hence, dim(L(P)) = 1 for all Pe S. Moreover, if o =2 in the
series of "non-gaps" at P, then {1,3,5,...,2g-1} are the g "gaps" of S at P.
rom Proposition 8, if al,.n.ag are the first g non-gaps with al = 2 and
H""’ng are the g gaps at P,
g-1 2g-2 g-1 g-1
Z {a,+n.) = £ j which implies Z a, + Z nj = {2g-2)(2g-1)/2
=1 3 1 5= =1 3 5=
_ a1
which implies g(g-1) + Z n, = (2g-2)(2g-1}/2.
j=1"
.og-1 _ 2
lence, Z ny = (2g-2)(2g-1)/2 - g(g-1) = (2g-1)(g-1) - g(g-1} = (g-1)".
Jj=1
‘n the general case where al may not be 2, this hecomes
g-1 g-1 g-1
o, + Zn, 2 g{g-1}) + Z n, which implies
=17 5= j=1
g-1
(2g-2)(2g-1)/2 > g(g-1) + Z n,
j=1’
g-1

z nj { (2g-2)(2g-1)/2 - g(g-1) = (g—l)2 for the gaps n‘j at P.
Jj=1
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The entiré preceding discussion was based on the existence of meromorphic
wynctions with poles of various orders at a specific P & S. Indeed, since
jeg{nP)=n, if n > g then dim(L(nP}} 2> 2 and there do exist nonconstant
weromorphic functions whose only singularity is a pole of order at most n at
», However, if n = g, there are nonconstant functions in L{gP) only if i[gP]

. 0, which is the case when dim{(L(gP)) > 2. Under these conditions, at least

mne of the integers 2,..,,g is a "non-gap." It is natural to wonder how many
such
'€ 8 exist.

‘heorem 12: There are only a finite number of points P on S at which
‘[gP] > 0.
'roof :

Assume that there are an infinite number of points {Pn} at which i[an] >
), n = 1,2,.... These points have a limit point PO on §, since 8 is compact.
et z = ¢(P), ¢(P0) = 0 be a local parameter about PO' Then, if {Pl,...,? }

g
ire the basis differentials of X'(S), Pj = fj(z)dz where the‘fj,j=1,...,g are

linearly independent functions about PO' Assume that the Pn lie in a
arametric neighborhood of PU and ¢(Pn) = zn. Since i[an] > 0, for each zn
h > 1o 12
: i = o(- i b #
ere exists a ¥ 01?1 +,..t céPg € 2¢( an) with i;1lcil # 0 and
clfl(zn) ...F cgfg(zn) =0
1 ' =
clfl(zn) ...k cgfg(zn) 0

clfig_l)(zni+...+cgfég_1)(zn) =0
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bhus, the Wronskian

fl f

fi fg
Wg(z) = det R :

fig-l) fég—l)

wst vanish at the points zZ,- Since Wg(z) is a holomorphic function of z, and

;ince it is = 0 at infinitely many points in a neighborhoed N of P this

P0 0 .
implies Wg(z) = 0. But, this implies fl....,fg are linearly dependent,
sontradicting the fact that fl""’fg were chosen to be linearly independent.

fherefore, there are only a finite number of points {P )} on § at which i[gP ]

» 0, 4

As a consequence of this theorem, we now know that thefe are only a
finite number of points at which there exist nonconstant meromorphic functions
m S whose only singularity is that pole of order g or less. These points are
:alled theVWeierstrass points of §. Notice that a surface of genus g = 0 or g
= 1 has no Weierstrass points. To see this, note:

{(a) For g = 0, i[gP] = i[0] = g = 0. Hence, for all P, i[gP] is never
nore than 0. Thus, this surface has no Weierstrass points by the above

theorem.

{b) In the case g 1, for P to be a Weierstrass point, we must have:
im(L(gP)) = dim(L(P)) > 2. But, by Theorem 5, dim{(L(P)) = 1. There Ean be
o Weierstrass points on 5 of genus 1.

These two cases are special. In general, for a surface of genus g > 2,
[

it can be shown that there do indeed exist Weierstrass points. At present, it

Is known that different Riemann surfaces S have different "constellations" of
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feierstrass points. However, there still remain unanswered questions
gconcerning which combinations can occur. Instead, estimates exist as to the
pumber W of these points which exist on a Riemann surface S of genus g. These
agpproximations take the form: 2g+2 < W < (g-1)g(g+l). {This will be proved
1ater.)

As is typical of every important concept in mathematics, there is another
pmanner in which to view Weierstrass points and their definition. However,
before we begin with this second method of definition, a few more ideas
concerning these points must be presented.

Let P ,...,Pn be the Weierstrass points in S. By the Weierstrass "Gap"

1

theorem, each Pi has associated with it g integers n; ...,nig such that there

19
does not exist a function f € K(S) holomorphic on S—{Pi} with a pole of order
nij at Pi' If these "gaps" at Pi are {1,3,5,...,2g-1}, then the Weierstrass
Loint Pi is said to be hyperelliptic. In fact, it has been proved that if all
of the WEierstrass-points of a surface of genus g > 2 are hyperelliptic, then

the number of such points con 8 is 2g+2.

As an example, we will consider a hyperelliptic curve of genus 2.

2
Example 3: The curve C defined by y = (x—al)(x—az)(x~a3)(x—a4)(x~a5) is a
hyperelliptic curve of genus 2. If the ai are all real, the picture of C in

the affine plane is similar to the following:
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m F2, this looks like:

Fig. 5

I claim that on ¢, there are 2g + 2 = 2(2) + 2 = 6 total Weierstrass

joints. Moreover, these points are a yA_,%. Since P is a Weierstrass

1:--- 5r

soint if and only if there exists a differential of the first kind w with a

zero of order g = 2 at P, to begin our investigation we must determine the
nature of the space of differentials of the first kind, El(C) on C. Since dim
£1(C) = g, we know that EI(C) has dimension 2. So, we must find two linearly
independent differentials of the first kind on C which will then form a basis:
I claim that @ = dx/y and @ = xdx/y are two éuch differentials.

Consider @ = dx/y. If we rewrite C as y2 -~ H(x—ai) =0, i.e. f(x,y) =0,
then 8f/dy = 2y. Therefore, 1/y = 2/3f/dy and » becomes w = 2 dx/9f/dy. If
{ is a local coordinate on a portion of the curve where the tangent line is
10t vertical (it may be horizontal) at each point of that segment of C, then
f/oy # 0. Hénce, w has no poles there. If you potice, since f(x,y) = 0, we
lave 0 = d(f(x,y)} = 9f/3xdx + af/oydy. This rearranges to read:
ix/af/dy = - dy/af/9x, and w becomes w = -2 dy/9f/dx. Then, on the portion
of the curve where the tangent line is vertical, 4f/dx # 0 and we can use y as
2 local coordinate on those portions of the curve. 1In that case, w again has
10 poles. Since w agrees under changes of coordinates, this all implies that
® has no poles on C in the affine plane. A similar argument shows. that
L xdx/y]c also has no poles in the affine plane.

Thinking of C as a 2-sheeted branched covering of Z, we change
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pordinates x = 1/s. Then, C becomes:

5 5
yvo = I (l/s—ai}
i=1
5 6
= (s I (i-a.s))/ s
. i
i=1

5
3.2
jo, {ys) =s I (l-aiS)-
i=1

3 3 ] .
Suppose we let w = ys so that y = w/s . At this point we want to show

chat xldx/ylc has no poles at s 0. Using the above coordinates x = 1/s

;= w/sa, xl/y dx]c becomes:

d(1/s)/st  _ -ds/s*Td _ —s'las

w/53 w/33 W

3ince i = 0,1, the s factor remains in the numerator, contributing a zero to
the different;al at s = 0. Also, at s = 0, ds = 0, and w = 0. So, the
ﬁfferential'has a simple pole and at least a double zero at s = 0 from the ds
term. But, the pole is cancelled by the zero and hence, the differential has
no pole at s = 0, which corresponds to .

Therefore, the differentials @ and @ are of the first kind on C.

foreover, because 7 has a zero at X

0 in local coordinates and w does not,
this implies that @ and 7 are in fact linearly independent. Hence, {w,w} is a

basis for ﬁl(C). All differentials of the first kind on C look like:

) (c1 + c, x)dx

Cy dx/y + c, x/y dx =

¥

khere ¢, €C,

o
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Now, a point P is a Weierstrass point on C if i[2P] > 0, i.e., if there

1 : .
exists an w € X7 (C) with a double =zero there. Above, I claimed that
aj: - ..as.& were Weierstrass points of C. Suppose we consider a;. Let
p o= (x—ai)dx/y . Since at ai the tangent line is vertical, we must change
X -2dy
coordinates to y, V¥ = (x—ai) From the (x—ai) factor, we get a zero
Af/ax
of order 1 at ai. However, in these new coordinates, dy = 0 also,

contributing vet another zero at a; - Thus ¥ has a double zero at ai and thus
a is a Weierstrass point of C.

At P = o, corresponding to s = 0, we saw that in changing coordinates
2 = -sds/w and m = -ds/w. So, consider w = -sds/w. At s = 0, the s factor
contributes a simple zero and the ds term a double zero. However, w also has
3 simple zero at s = 0. But, this cancels with only one of the zeros in the
wmerator, leaving w with a double zero. Therefore, by definition, s = 0,
shich corresponds to X = o, is a Weierstrass point of C.

Thus, a

ve.,a o are all Weierstrass points of C. In fact, these are

1’ 5’

the only such points on C. Hence, the number of Weierstrass points, W is 6 as

:laimed. Q@

In general, all surfaces of genus 1 or 2 are hyperelliptic. A surface is
wperelliptic if and only if there exists an effectiye divisor D of degree 2
3vt. dim(L(D}) = 2.

Having tested the waters with a concrete example, it is now appropriate
to proceed with the compatible definition of Weierstrass points mentioned
ibove. First, some basic concepts.

Let A be a finite-dimensional space of holomorphic funcfions on a domain

De C, such that dim(A) = n > 1. Let z be any point in D. By a basis of A

15
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japted to z we mean a basis {?1,....?n} with ordz? < orsz <...< ordz?n

1 2

5 construct such a basis, let Hy = min{ordz?} and choose ¥

€ A with ord P, =
Y<A z 1

1
i = {P | Y o> i = Vd ® ;
;- Then, if A1 {P € Aiordz ”1}’ A Span{.l} i Al and Al is an

np-1)-dimensional subspace of A, Again, let H, = min{ordzﬁ} and choose ?2 €
FeEA

1
such that ordz‘?2 = yz. Continuing in this vein, the desired basis will be
pnstructed. Since at each step any Pi satisfying ordzf’i = Pi is chosen, this
asis is not unique. However, we can create a unique basis adapted to =z
which will depend only on the local coordinate chosen) by multiplying the

aylor expansions of the ?i by an apprbpriate constant to yield (ﬁf £ is the

pcal coordinate):

Hq
?1 = {§-z} + h.o.t.
Ho
Pz = (¢-z) + h.o.t.
Pn
Pa = (¢-2) + h.o.t.
claim that pj 2 Jj-1 for all j. To see this, use a proof by induction.

irst, notice that since these functions are holomorphic, Pl > 0. Thus,

1 2 1-1 = 0 as desired. Now, assume this holds for j and show for j+ 1.

¥

ince it holds for j, uj > j-1. But, by construction of the basis,

j+1 > yj > j-1. Thus, Pj+1 > j = {j+1)-1 as desired.

lefinition 6: We define the weight of =z with respect to A by =x(z) =

n .
Z {yj—j+1}. Notice that since yj > j=-1 for all j, v(z) > 0 also.
=1 .
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Examples 4:
1. As an example, suppose that yl =1, Fz = 2,...,yn = n. Then
n n '
¥(z) = ¥ (j)-j+*1 = E 1 = n.
Jj=1 J=1
2. Suppose now that Fl - 2, Pz =4,..., yg = 2g. These are the first g

non-gaps at P, if the first nongap is 2. Then,

g g
T(z)} = Z ((2j)-j+1) = ( Z j)+g = g(g+1}/2 + g = g(g+3)/2
j=1 j=1
Now compare this with the situation By o= 1, B, = 2,....yg = g which from

above gives 4(z) = g. Since g < g(g+3)/2, this implies that indeed there are
integers in {1,...,g} which are not contained in {ul,....yg}. In short, the
more positive the weight, the greater the deviation of the sequence

|

{yl....,yg} from {0,...,g-1}. There is another interesting>way to interpret

1(z).

Proposition 10: Let {Pl,...,Pn} be any basis for A. Consider the holomorphic

function {the Wronskian)

Pl(z) ............. * (z)
?i(z) ............. ' {z)
W (z) = det
(n-1) (n-1)
‘Pl (z)......... 'Pn (z)-

Then, 7(z) = ordz(wg(Z)), the order of vanishing of the Wronskian.

Proof: Notice first that a change of basis will lead to a non-zero constant

Mltiple of wg. To see this, recall that if {?1,...,?n} is a second basis for
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n
¥ = Z ¥ . = e e, I ther words,
, then Py z aki'i for each k 1, ,n.where ak1 . n othe 0
i=1
a]:l ..... ain ?1 ‘Pl
..... a r »
nl nn n n
211 n
et A be the invertible matrix a a From this we get,
| nl nnJ
: o (K) (k)
v P! P b4
§ 1 f711 1 I 1 1
Al 1] = and in general A| = . . And so,
el e )| (k)
E | n n
[*Pl ........ P } }
det X At = W (z) . Since A is invertible,
[ (n-1) (n-1)J ] g
¥ ¥+
| n n

et At * 0,

Because of this, we may assume that the basis under consideration is the

ne adapted to z. Write Wg(z) = det[?l---?n]. Next, notice that



et[f?l,...f?n] =

det[f?l-'-f?n]

y adding -f'

rom each

Tow by adding multiples of row 1 to each.

f det

£2det
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n . e .
f dEt[Tl"'Tn]. This we can see as follows:

= det

f det

f det

times row 1 to row 2.

£

fP1+f ?1

fPin—1)+...+f(n—l)?1

"1

P +£7P

{n-1) {n-1)
f?l + +f ?1

w®
1

£

(n-1) eeapmm1)y
f?l +erotf *,

soora(n-1)£ 07205,

il

n

fr +f'P
n n

f?h+f'?n

f?én_1)+---+f(n_1)?

¥
n
Pt
fn

f?gn—1)+.._+f{n~1)?

o (n-1)
n

n

(n-2),
+er +(n-1)f ?n

.. _ (n-2),,
+ +{n-1)f ) ?n

Similarly, we can remove multiples of ¥
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~(3)

jepeating this procedure for each row and each ¥ {z), we end up with:
mdet[?l---?n] as desired,
Using induction on n, we are now ready to prove the proposition:
= = = = * =
(1) For n=1, Wg(z) det(¥ (z}) = ¥ (z). Thus, ordzwg(z) ord,*, (z)
Hy = (2).

{2) Assume the proposition holds for k, so that ordzdet[?l---?k] =

k
zl(yJ-J+1) where y = ordz?j. Consider det[?l,...,?k+1] =
=
det[P., P (P /P )... ¥ [?k+1] = P gerr1, 2 sp L2
PORLLT T T T e ll 3 J] =¥y et/ P /]
1
é ?2/?1
. (?2/?1)
k+1 .
b det|:
1 . (n-1)
0 (? /? )
ixpanding along the first column,
k1 [ \ \
—?1 det_(‘Pz/‘Pl) . e (‘Pk+1/':°1) ]
Jsing the induction hypothesis,
k+1
md {P +det (? /P )l R § k+1/? )} ])
k 1
= v ' '
ord (¥ } o+ ordz(det[(szPl) .. "(?k+1/?1) ])
k+1
= (k + 1)#1 +  Z ((ord, (? /P ') - (- 1) + 1},
j=2
} L ¥ -
ut, ordz(?j/?l) ordz( J./'1"1) 1
= Hj - H -1
jo,
k+1
= (k+ 1p + Z ((y My - 1) - (3 - 2))
j=2
k+1
=(k+ 1) + I (Hj M1 =)
Jj=2
k+1 . )
=K o* z (pj - j+1) = v(z) as desired. 0O
j=2
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From this theorem, there are two corollaries which become apparent.

orollary 2: Let A be a finite-dimensional space of holomorphic functions on
domain D<€ €, The set of z € D with positive weight with respect to A is

iscrete.

roof: By this, we mean that around each point with positive weight in D we
an find an open set U such that no other such points lie in U.

If z is a point with positive weight, then from the proposition,
rdeg = v{z) > 0. We know that Wg(z) is a holomorphic function, and since it
s non-zero in this case, we can use the fact that if f is holomorphic on
cl, f # 0, then the zeros of f are discrete. Thus, the zeros of Wg(z) are

iscrete. 0O

grollarv 3: Under the hypothesis of Coreollary 2, for an open dense set in D,

he basis (¥ ,Pn} of A adapted to z has the property ordZPj =3 -1.

1 '

roof: By hypothesis, ordsz = pj. Because Wg{z) is holomorphic with a

iscrete set of zeros, on an open dense set the order of vanishing of Wg(z) is

Thus, ordzwg 0 which implies from Proposition 10 that ¥(z) = 0, i.e,

[ -]
[]
(=

(yj - i+ 1) . But, since #j = ordsz » 0, the only way for this to
1

H
.

ccur is if Pj -1 for all j. O

Having established these preliminary remarks, we are now in the position

0 redefine Weierstrass points in terms of weights.
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efinition 7: Let S 'be a compact Riemann surface of genus g }» 1 and let
1(s) be the space of holomorphic differentials on S. A point P € § is called

weierstrass point if its weight with respect to Hl(S) is positive.

In other words, knowing that HI(S) has dimension g, we can find the

1
nique basis of ¥ (S) adapted to P € 5, (¥ - ?g}, stch that

1 1
¢ <ord ¥ <. . . < ? . . = F . , i i
rdPr1 0 dpr2 orde’g Let pJ ordp'rJ Then, P is a Weierstrass

g
oint if (P} = Z (u
j=1

.- + 1) > 0.
j 7 }
At the moment, it may seem that this definition may not be compatible

ith the one given previocusly. However,

roposition 11: A point P on a Riemann surface S of genus g » 2 is a
eierstrass point (by this new definition) if and only if i[gP] > 0, i.e. if
nd only if there exists a non-constant holomorphic differential on S with a

ero of order > g at P.

5292} Becauée surfaces of genus 0 and 1 have no Weierstrass points {(as we
howed previously), we need only assumé that g > 2.

Suppose first that i{gP] > 0 so that P is a Weierstrass point under the
11d definition. From Theorem 2, we saw that i[gP] = dim{L({w} - gP)} =
Hm{wi-w is a d.f.k. such that w has a zero of order > g at P}. Recall that
({w) - gP) is a subspace of Hl(S). We know that dim(ﬁl(S)) = g, This

mplies that a basis for ]{1(8) adapted to P will consist of g linearly

hdependent differentials of the first kind, {?1, .. ,?g}. Moreover, 1if
e = . : .
let ordp(?j) Pj’ then My < My <. . .« Pg by construction of this
. g
asis. Now, consider <Y(P) = Z (pj - j + 1). Because i[gP] > 0, this
. J=1
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implies that there is a differential of the first kind @ on S with a zero of
yrder > g at P. This differential will be a finite linear combination of

4 ,?g}. Thus, in order for ordpn > g, at least one of the Hj for

1’
jome j must be > g. (Although this is not true for an arbitrary basis of
ﬂ(s), because we have constructed an adapted basis, this fact follows.)-
{ence, for that j, yj - j+12g -3 +1>0 since j can only be one of
,..-,8. Now, since we know that Pk > k - 1 for all k, this implies that
(P) > 0, and P is a Weierstrass point under the most recent definition.
Suppose P is a Weierstrass point under the new definition, so #%(P} > O.
‘his implies that for some j, Pj > j -1 1. But, because our basis is
irranged such that Pl < pz <, . . < pg and since pk 2 k-1 for all k,

‘he fact that at j, yj 2 j implies that Fj+

1 2 j + 1, which implies

j + 2. Continuing in this vein, for any integer k, M j + k.

>
'j2 2 g 2
low, if j + k = g, then pg 2 g. Thus, ordP'Pg 2 g which implies that
'g € L((w) - gP) and 1i[gP] = dim(L((w) - gP} > O. Therefore, P is a

feierstrass point under the old definition. 0O

Becauée of this theorem, we now know that indeed the two definitions
tiven above for Weierstrass points are compatible. The fact that we have two
lifferent manners in which to view the same concept at our disposal will prove
‘0 he quite advantageous for our future endeavors. Complicated theoretical
\anipulations under one definition may be significantly simplified when
pproached from the other direction. Such is the case when attempting to
letermine the estimates on the number of Weierstrass points, W, on a compact
Yiemann surface S. When this was mentioned previously; proof was not
tttempted at that point because under the first definition the result is not

Iuite obvious. Approaching this problem from the standpoint of weights,
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Wever, the desired result becomes almost an immediate consequence.
jerefore, using our second definition of Welerstrass points, we will

stablish the following:

jgorem 13: Let W be the number of Weierstrass points on a compact Riemann

irface of genus g > 2. Then, 2g + 2 £ W < g3 - g.

Before proving this, there are two preliminary results which must be

stablished.

roposition 12: For g > 2, let %(P)} be the weight of P &€ S with respect to
1 . . 1 . . .

(8). Let Wg be the Wronskian of a basis for ¥ (S), whose dimension is
im(ﬁl(S)) = g. Then, Wg is a holomorphic g(g+1)/2 - differential. Hence,

ST(P) = (g - L)g(g + 1).

m

roof: First, let us show that Wg is indeed a g(g+1)/2 - differential, i.e.

_ , glg+l)/2
hat Wg is of the form f{(z)(dz)

Let {wl. - ,wg) be a basis for xl(s), such that wi = fi(z)dz in
ocal coordinates, where fi is holomorphic. Then, by definition,
F W ) 7
W_= det} , 1 9 . g 2
g £, (dz) £_(dz)
13 3 " i1 3
f1 (dz) fg (dz)
L1 g ]
(k) k+l | . . .
here fi (dz) is a (k + 1) - differential. Then, W is a sum of terms
f the form f(dz)(dz)2 . e (dz)g where f is some holomorphic function.
ut, f(dz)(dz)2 .. (dz)g = f(dz)1+2+"'+g = f(dz)g(g+1)/2. Therefore,

g is a g(g+l)/2 - differential.
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Now, it can be checked that wg transforms as a g{g+l1)/2 - differential.

For an m-differential, the number of zeros counting multiplicities is

(g - 2). Since W ié a gl(g+r1)/2 - differential, Z ord W =
g pes L' 8
g-1)2(g(g+1)/2) = (g-1)g(g+l). But, since EZ ordpw = Z v{P), this implies
Pes €  Ppes

: *(P) = (g-1)g(g+l) as desired. DO
ES

heorem 14: For g > 2, the weight of a point with respect to the holomorphic
belian differentials is ¢ g{(g-1)/2. This bound is attained only for a point

where the "non-gap" seguence begins with 2.

roof: Proposition 12 tells us that (1) X « (P} = (g-1)g{(g+l). This gives
PES

s a bound on the number of Weierstrass points on S. The larger the weighté
t P€ S, the smaller will be the number, W, of Weierstrass points.

Now, (1) implies that #¥(P) ¢ (g-1)g(g+l). However, we can determine an

ven more precise estimate for v(P}. Let 2 ¢ al < az < . . . % ag = 2g be
he first g "non-gaps" at P. Then, 1 = n, < n, <, ., . < ng < 2g are the g
gaps" at P. (This sequence {nj} is just the complement of {al, A ,ag}
n {1, . . . ,2g}.) Then, recalling that the possible orders of abelian

ifferentials of the first kind at P are:

0= n, - 1< n, - I1<. .. < ng -14{2g -2,
. 1
his implies that in a basis {w_, . . . ,© for ¥ (8), ord ¥, =4, = n,-1
© % (8) Py 3T N
hich gives, "j = “j + 1. Hence,
g E g g
v(P) = Z (pj -j+1)= Z {n, - 3jy= Zn, - Zj.
j=1 j=1 j=1 9  j=1
g 2g g 2g g :
et, Z (x, + n,} = Z j , which implies Zn, = Zj - Za, , Thus,
j=1 J J j=1 j=14 i=1 j=1
2g g g 2g g 2g-1 g-1
¥(P) = Zj - Za, - Zj = I j - Z« = X i - Z«a,
hES TR ESTR S E51 j=g+l =17 jeg1 j=1 7
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2g-1 24 2g
ow, £ J = Z j + Z j . From this, we get
j=1 i=1  j=g+1
2g
2g{2g - 1)/2 = g(g-1)/2 + Z j
j=g+1
0,
2g-1 2 2 2
I j = 28" -g+ (g°-g)/2 = 3/2¢g° -3/2g = 3/2 glg - 1}).
j=g+1
2g-1 2g
[owever, Z j ¢ 2 j = 3/2 g(g -1). Also, from Corollary 1,
J=g+1 Jj=g+1
-1 g-1
2 a, » g{g - 1), which implies - Z a, ¢ -g(g - 1). Therefore,
i=1 J j=1 J
2g-1 g-1
(P} = Z j - Za, ¢ 3/2g(g-1) - glg-1} = glg - 1)/2.
j=g+l  j=1 Y
g-1
ow, ifa, =2, Za, = g{g - 1), and we get equality. 0O
1 =1 J
At this point, we are ready to prove Theorem 13.
‘roof of Theorem 13:
We know from proposition 12 that er(P) = (g - 1)g(g + 1}. This gives

1s an upper bound on W. Thus, W < g3 - g.

Now, from Theorem 14, (P} ¢ g(g - 1)/2. Also, the larger the weights
it P ¢ S, the fewer the number of Weierstrass points on S. Suppose that for
11 P on 8, +(P} = g(g - 1}/2, Then, if W is the number of Weierstrass
oints, W will be the smallest possible on $§ in this case. Also, we have:

Z4(P) = W(gl(g -1}/2}) = glg - 1)(g + 1}). 8o, W = 2¢g + 2. Therefore,
‘ug .

this is a lower bound on W, so 2g + 2 ¢ W. O

We now have a rough estimate for W. Interestingly enough, we can
lescribe situations wherein equality holds in the expression of Theorem 13.

lecall from previously that for a hyperellibtic curve C, the "gap" sequence
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or a Weierstrass point on that curve is {1,3,5, . . . ,2g - 1}). But, this
pmplies that the "non-gap" sequence is {2.4, .o ,2g}: Since al =2 is
he first “non-gap" listed here, by Theorem 14, <¥(P) = g(g - 1)/2 for all

€ 5. Hence, as we saw in the proof of Theorem 13, this implies W = 2g + 2.

Suppose that the "gap" sequence at each Weierstrass point P of a surface

is 1,2, . . . ,g~-1, g+ 1. Then, as we found in proving Thoerem 14,

g
(p) = Z (n, - j} where n, is a "gap". Then, for

jop J j

g-1
n,) = {12, . . . ,g -1, g+ 1}, P} = 20 + ({g+1)-g) =1.
J j=1
herefore, Z 7(P} = W (¥(P)} = g{g - 1)(g + 1) which implies that
PeS
3

=g ~ g
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(. Background Information: Singular Curves

A. Differentials and the Riemann-Roch Question

Having discussed the theory of differentials and Weierstrass points on

pooth algebraic curves, it would be appropriate at this time to move to a

imilar discussion on singular (especially nodal) curves. OQur general
:ference for singular curves is [11]. Suppose we let X be an irreducible
2 r

ingular algebraic curve in P, or P, r » 2 more generally. Then, we know

e following:

ict: There exists a smooth algebraic curve (or Riemann surface) X, called
1e¢ normalization of X, with the properties that:

1) The field of rational functions on X is isomorphic to K(X); and

2) There exists a "parametrization" of X by X: that is, there is a

olomorphic mapping #m: X — X such that for some finite set of points

) _ -1 _ s
TR Pn- of X, m: X -= ({Pl’ ... .Pn}) — X {Pl' ... ,Pn} is
n isomorphism.
xamples:
. . . 2 3 2 . 2 .
1) If we consider the nodal cubic X defined by y = x + Xx in #°, this
as normalization X = Pl. To see this, suppose we let L: yv = tx be any line

hrough the node P of X. Then, L meets X with multiplicity 2 at P. To find

he third point of intersection, solve y2 = x3 + x* and y = tx

imultaneously. %
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2 3 2
(tx) =x + x
t2 = x +1
XxX=t -1
y = t(t2 - 1)
) . . . _ o=l _ 2 3
iis defines a holomorphic mapping @: i _— X, Tf(t) = (7 - 1, t¥ -~ t),
1 -1 1
ere W PT - wm “{p} —» X - (P} is an isomorphism. Thus, P~ is the

yrmalization of X.

2) Similarly, in considering the cuspidal cubic X; yz = x3, this also has

srmalization ¥ = Pl. Again, letting L: y tX be any line (isomorphic to
'} through the cusp Q, solving the eqguations for X and L simultaneously, we
2 3 . . . 2 3 1 .
nd: (xt)" = x", which implies x =t and y = t°. Thus, %: P — X defined
ra(t) = (t2,t3) is a holomorphic mapping and m: pl - ﬂ_l{Q} — X - {Q} is
| isomorphism as desired.
3} The curve X: y2 = xz(x + 3)(x + 2)(x + 1), which graphically is as in

ie fipure, has as normalization a curve of genus 1. An explicit holomorphic

pping w: X — X would involve elliptic functions.

4
—-‘
N\ ¥
-3U“ -
Fig. 6
4} For any g, we can construct a g-nodal rational noda X by

Wosing 2g distinct points bi and <y in Pl and identifying them in pairs. A
‘ 7,

‘nodal rational nodal curve would be:

o
—

Fig. 7
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_ . -
ach a curve has normalization i

Just as in the case of smooth algebraic curves, we also have the notion

f the genus of a singular curve.

efinition 8: If X is a singular curve, and X is its normalization, with

arametrization 7: X — X, then the geometric genus of X is the genus of X

s a smooth algebraic curve.

It would be advantageous fo us if X actually behaved like a smooth
igebraic curve of genus equal to the geometric genus. We have previously
iscussed much of the theoretical background concerning these smooth algebraic
urves. However, this is not the case. In fact, singular curves actually
ave properties similar to smooth curves of genus bigger than the geometric
enus of X. Moreover, the more "complicated" the singular points, the larger
his "arithmetic genus" of the singular curve tends to be. Before we give a
recise definition of "arithmetic genus", it is necessary to provide a means
f measuring the degree of complexity of the singularity of X at P, called the
-invarjant, For our purposes, it is more beneficial to define this value for
he particular types of singularities which we will encounter in our ensuing

liscussion.

lefinition 9: 1) The &-invariant for a smooth point P is 8, = 0.

2} For a node (ordinary double point), 6P =1,

3) If P is a "unibranch singularity” (If U is a small open set

ﬁ the curve such that P € U, then P is a unibranch singularity if
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1(U - {P)) consists of one connected component in E:), we can define EP as

ilows: Let OP be the local ring of X at P (Recall, a local ripg is a

mmutative ring with identity that has exactly one maximal ideal.),

= {f € K(X) ] f has no pole'at P), and let O be the corresponding ring at

Ipy e X, i.e. T = {g € K(X) | g has no pole at ﬂ_l(P)). Then, we define
= dimc(GYOP). (This quotient is always a finite-dimensional vector space
er C.)

gmples: 1) Consider the example of the cusp X:_y2 = x3, given previously.

 this case, X = Pl and w(t) = (t2,t3). In this case, for the singularity
= 0 on X, corresponding to t = 0 on Pl, c = {a0+a1t+a2t2+ . | a, € C}.
1 the other hand, because X has parametrization : Pl — X defined by
1,t) = (1 t2 t3) we see that 0, = {b _+b t2+b t3+ lb € C} Thus
Ldy ’ * ’ P o 2 3 e i . M
im(570p) =1, i.e. 570P is generated by t. Therefore, 8, = 1 in this
ise.

2) In general, for a cusp X: y2 = x2k+1, we find that

— 2 3
| G = {a0+a1t+a2t ra tte ]ai € €} and
. 2 4 6 2k 2k+1 ’
OP = {b0+ bzt +b4t +b6t +"'+b2kt +b2k+1t + ... | bi €C).

hus, dlm(G/UP) = k and 6P = k.

With the notion of the o-invariant fresh in mind, we are now in the

osition to define the "arithmetic genus" of X.

efinition 10: The arithmetic genug of X is given by:

p. (X} =g(X) + zo
a Pex p

Notice that Z 6P does indeed converge. If P € X is a smooth point,
PeX .
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= 0. Moreover, on a singular curve, there are only a finite number of
igularities, with finite values for 5P. Hence, Z &

p is actually a finite
PsX

n of integers.

mples:

1} The nodal cubic X: yz = x3 + x2

1
was seen to have normalization P .
us, g(?l) = 0. Moreover, the node P is its only singularity, with 6P = 1.
nce, pa(X) = 1.

2) For the cuspidal cubic X: y2 = x°, we saw that X = Pl, so again
¥)=0. Also, we found that at the cusp Q, &

Q = 1. So, pa(x) =1,
. . 2 2k+1 R . . 1
3) Considering X: y = X , which also has normalization [P", wWe saw

at 5P = k at the cusp P. Hence, pa(x) = k.

4) Suppose we look at X: y2

2
X (x+3)(x+2)(x+1), the "nodal hyperelliptic
irve”, which has a node at P

{0,0) and no other singularities. In this

ise, .g(X) =1 and 6, = 1, so pa(x) =14+1=2,

5) Finally, for a g-nodal rational curve X, g(X) = 0. Also, X has g
ydes Pl’ . . : ,P_ at the points where bi and c; are identified, with
1

, = for i = 1,....8. These nodes are the only singularities of X.
% -

*nce, pa(X) = 0 +

Recall that on a smooth algebraic curve, € (compact Riemann surface), of
enus g, the vector space RI(C) of holomorphic differentials has dimension

We may ask if a similar phenomena occurs on a singular curve, X. 1In fact,

m such an X, the arithmetic genus also measures the dimension of a vector

pace of differentials, called dualizing differentials.




e

Page 52

;- . . . o .
%éfinition 11: Let X be an irreducible singular algebraic curve iny , r ; 2,
,.-————' -
and let X be its normalization. A dualizirg difierential on X is a

peromorphic differential on X, w, with the following properties:
1) w has no poles except at Q € ﬂ_l({singular points of X}};

2) for all singular points P € X, zZ Res{fw) = 0 for all
qer 1(p) - ©
ted

It is interesting to note here that as for a meromorphic differential W
;n a smooth algebraic curve C of degree g for which deg((w)) = 2g~2, so too do
we have a similar formula for a dualizing differential @ of a singular curve
of arithmetic genus pa(X): deg((w)) = 2pa(X) — 2 where (w) is the divisor of
w,
)
Examples:

1) As an example, suppose we consider the nodal cubic X; yz = x3 + xz,
which can be viewed as X = Pl with the points P=1, Q=-1 identified. Let w be
the parametriéétion mentioned in the previous example concerning this curve.
It can be shown that the differential of the third kind
u+1,_1 = dz/{(z~1) + (-dz)/{z+1) on Fl gives a dualizing differential on X.

For X, the singularity is P = 0, with = T(P) = {1,-1)}. Notice that 0.

has poles only at +1 and -1, the elements of n_l(P). Recalling that

Re = = - 1 ch .
+1s (w+1,_1) 1 and Eis (w+1,_1) 1, and given any f o’ e have:

31 Rgs (fw+1'_1) = Efs (fw+1’_1) + fis (ﬁw+1’_1) = f(o) - f(0) =0
Qem ~ (P)
as desired. Since f € Gp was arbitrary, m+1 -1 is a dualizing
differential.

2) Similarly, if X is a g-nodal rational curve formed by identifying bi
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bnd ¢, on B, i-1,....g for distinct points b ,c., the differentials ®,

511 give dualizing differentials on X.
3y If g(ﬁ) > 0, then every differential @ of the first kind on ¥ also’
gives a dualizing differential on X. Such differentials «w have no poles, and

for all £ € O, f has no pole at P. Hence, Res(fe) = 0 for all Q € 7 1(p).

Q
(Notice that g(X) > 0. This is because if g(X) = 0, then dim(ﬂl(f)) = 0 and
there are no differentials of the first kind on X.)
4) On the cuspidal curve X: yz = x3, the differential of the second kind

on Pl. w = dt/tz, is a dualizing differential. The only singularity of X is

at P = (0,0), corresponding to t = 0 on X. Notice that w has a-pole at £t = 0

. 3 .
and no other poles. Moreover, recalling that 00 = {a0+a2t2+a3t +...|r:1-_,l et
2
and noticing that Res (tk(dt/t }J) =0 for k = 0,2,3,... we see that for any
‘ t=0
keo, Res (fo) =0. Hence, v is a dualizing differential on X.
t=0 .
2 2k+1 : :
5) For X: y =X , it can be seen that the following will be a set of
- . X 2 4 6 2k ,

duvalizing differentials for X: L = {dt/t",dt/t ,dt/t",...,dt/t" }. Notice

(0,0) of X, corresponding to t = ¢ in Fl.

that at the sole singularity P

o
dt/t ' has a pole, but no other poles.

each of these differentials wi

- 2 4 6 2k 2k+1
Recall that Gy = {a0+a2t +a4t +a6t +...+a2kt +a2k+1t + ai € €}. Then,
Res (t(dt/t%Y)) = 0 for all j = 2,4,6,...,2k,2k+1,... and all i = 1,...,Kk.
t=0
Hence, for any f € OP and all i =1,...,k, Res (ﬂai) =0 and L is a set of
t=0

dualizing differentials of X.

In general, we have:

Theorem 15: The dualizing differentials on X form a vector space of dimension

Da{x) over C.

e
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Thus, in the five examples given above, we have actually found all of the

jualizing differentials in each case.

Having established this parallel between concepts on a smooth algebraic
curve and those on a singular curve, we now venture to pose the Riemann-Roch
question on singular curves. The answer to the Riemann-Roch question is very
pnice in the case in which the singularities of X are "Gorenstein”. For
jinstance, nodal curves are Gorenstein, as are curves possessing only cusps

locally isomorphic to yz = x3. And so, we have;

Iheprem 18: (Riemann-Roch Theorem for Gorenstein Curves)
et D be a divisor on X such that D contains no singular points of X. Then,
dim(L(D)) - dim(L({w) - D) = deg(D) + 1 - pa(X)

where {w) denotes the divisor of a dualizing differential on X.
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B. Weierstrass Points and the Abel Question

Recall that if Y is a smooth algebraic curve over © (Riemann surface) of
genus g > 2, and K is the canonical divisor class on Y (i.e. the divisor class
of the divisors of differentials of the first kind on Y), then a point P& Y
is a {"classical") Weierstrass point if there exis£s a differential of the
first kind, @, on Y such that (w) - gP > 0, so that dim{(L(K - gP) > 0. 1In a
gimilar fashion, if n > 1, let Y= dim(L(nK})) = (2n-1)(g-1} by the
Riemann-Roch formula. Then, we say that P € Y is a Weierstrass point of order
n {(or an n-Weierstrass point} if there is an n-differential n such that
{n) - vnP > 0, so dim{(L(nK -~ vnP) > 0. In other words, # has a zero of order
'n at P, which is a zero of a higher order than expected. (We know that there
exist n-differentials p with zeros of order < T, = dim(L(nK)).) ( From our
éarlier discussion, we know that these definitions may also. be stated
squivalently in terms of the Wronskian of a basis of the vector space of
differentials of the first kind, HI(S), or the vector space of
n-differentials; or in terms of weights.)

Above, K. was assumed to be the canonical divisor class on Y. More
Zenerally, we can consider the situation in which D is any divisor on Y.

Then, P is a Weierstrass point of order n of D if either:

1) dim(L(nD - snP)) >0 , where s = dim(L(nD)); or

2) ‘there exists an f € L(nD) with a zero of order at least S, at P.

If we consider a divisor D on a smooth algebraic curve Y such that

leg(D) > 0, and let W(D) represent the set of all Weierstrass points of D of
- _

drder n for all n, i.e. W(D) = U {P | P is a W-point or order n of D}, then
n=]1

{t is known, by a result of B. Olsen ([10]), that W(D) is dense in Y (in its
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Esual topology). As we have done before, we may ask if notions such as these
gor smooth curves can be extended to similar concepts‘ in the case of a
si_ngular curve. In fact, such a development is indeed possible. We begin by
investigating the idea of Weierstrass points on a singular curve,

Originating with the work of R.F. Lax and C. Widland, [14], we have a
manner in which to define Weierstrass peints on Gorenstein curves. Let X be
an irreducible projective Gorenstein curve of arithmetic genus g > 0 over €,
and let w be the canonical divisor class of X (i.e., the divisor class of
divisors of dualizing differentials). Suppose D is a divisor EniPi on X such
that for all i, Pi is not one of the singular points on X, and let
s = dim(L(D)) defined as on a smooth curve. Then, we can find a basis
» (=)

{Pl,...,PS} for L(D). Fix a function

bhart qa of X are no worse than D|U = the points of D in Ua. Expanding in
|
[+ 4

whose poles on the coordinate

local coordinates on UG < X, for each j we have:

=]

_ o (&) gla) _ (x} k
Pj Fl,j b4 (kioaj'k Z

) ,P(a)

(=)
1,]

poles in qa' Then, d?j are dualizing differentials, and we have:

where z is the local coordinate on qﬁ and F is a function possessing no

()

de = dF which we define to be F(q! dz

1,] 2,7
{«) . (@)
sz,j defined as F3,j dz
| aF'%)  uhich we let equal F') dz
| i-1,] i,J
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mrom this, we can construct the Wronskian:

[ (@) (@) ]
p(a) - det 1.1 e 1,s (?(a))s(dz)s(s—l)/2
(a) R (-9
F2,1 . F2,S
NCY o)
| “s.1 o 5,8 |

shich, as in the case of a smooth curve is an expression which is invariant

o) _ (A

mder coordinate changes. In other words, on Ua Nn U_.. Hence,

A
#¢ can define p to be an element of the space of s(s-1)/2 - differentials on X

(«) on Ua such that the poles of p are bounded by sD.

#ith local expansion p
With this construction of p, we are in the position to be able to discuss

the Weierstrass points of X. First, we need:

Jefinition 12: The order of vanishing of p at P € X is equal to the order of

vanishing of the Wronskian det(Fia;) at P if P € U, -

(Recall that the order of vanishing of a differential f(z)dz is given by
the order of vanishing of f. Furthermore, the order of wvanishing of f at a
point P, ordP(f), is the integer k such that the coefficient a{ of X in the
laurent expansion of f around P corresponding to x = 0 is zero for ¢ < k, but
ik # 0.)

We now have all of the machinery to state the following definition:

Qefinition 13: 1) The D-Weierstrass weight of P is the order of vanishing of

? at P, {This value is usually 0.}
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¢ 2) P is a Weierstrass point (of D) if the D-Weierstrass
eight of P is > 0,

3) P is a Weierstrass point of order n of D if P is a W-point

f nD.

Quite expectedly, as on smooth curves, it can be shown that a smooth
oint P on X is a W-point of D if and only if dim{(L(D - sP) > O where s =
Am(L(D}).

From the definitions given above, it is interesting to note that a
recise value for the “"number"” of W-points of D (where the "number" is counted

iith weight as its multiplicity) can be found.

Poposition 13: ({71, Prop. 2, p. 109) The "number” of W-points of D,
opunting multiplicities, is

s(deg(D)) + s(s-1){g-1).
i.e., X weights = s{deg(D)) + s(s-1)(g-1}.)

Toof: Notice that p/(dz)s(s~l)/2

is an element of L((s(s-1)/2)-(w) + sD).
lence, p = fi7 where f € L(sD) and # is an s(s-1)/2 - differential. We
uld like to determine the order of vanishing of p, i.e. the number of zeros
hat p has on X. This value will be the order of vanishing of all Wronskians,
nd hence the total weight.

Since f € L(sD), f has at most s(deg(DP)) poles, and because f is a
eromorphic function on X, this implies that f also has at most s(deg(D))
BTps . On the other hand, the fact that w is an s(s-1)/2 - differential
hdicates that w has s(s-1)/2 (deg((w))) = s(s-1)}(2g~2)/2 = s(s-1)(g-1) zeros.
ince p = fw, the number of zeros of p is equal to the sum of the number of

tros of f and of w, i.e. the number of zeros of p = s(deg(D)) + s(s-1){g-1).
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.nce, the total weight is s(deg(D)) + s(s-1)(g-1) as desired. u

Defining W{D) again to be the set of all Weierstrass points of order n

yv all n, and recalling the result of Olsen that on a smooth curve on which
7e divisor D had positive degree W({D)} is dense, the question can be raised as
y what the behavior of W(D) would be on a singular curve ¥. On such curves,
large portion of the total “"number" of Weierstrass points is accounted for

j the singular points of X. 1In fact, we have:

roposition 14: ([7], Prop. 3, p. 110) Let P be a singular point with

-invariant GP. Then the Weierstrass weight of P is > s(s—l)bp.

olla 4: If s > 1, then every singular point is a Weierstrass point of D.

taof: Since P is a singular point, 6P > 0. Hence, by the preposition, the

eierstrass weight of P is s(s~1)5P > 1(0)(0) = 0, and P is a Welerstrass

oint by definition. 0O

From this, it may be conjectured that as a family of smooth algebraic
urves approaches a singular curve, many of the Weierstrass points of these
woth curves tend toward the singularities. This seems to suggest that on a
ingular curve, tﬁe set W(D) might no longer be dense. Throughout the
tmainder of this ﬁaper, we will be working with 2-nodal rational . nodal
irves, attempting to justify this claim and in fact determining the exact
cation of the limit points oflthe set W(D). Before we begin this task,

owever, we must discuss a few more preliminaries.

L
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Beginning in the general case, let X be an irreducible rational nodal
gurve with g > 1 nodes. We seek an answer to the Abel question on X: Given a
jivisor D of degree 0 on X which does not contain any of the singularities of
¥, when is D the divisor of a meromorphic function on X? The answer is
surprisingly simple in this case.

Since X is a rational nodal curve, we have seen that X = P is the

gpormalization of X, with the parametrization:

§jotice that a meromorphic function on X is merely a meromorphic function on Fl
shich takes the same value at bi as at ci for each i = 1,...,g. On the other
hand, if D is a divisor of degree 0 on X which does not contain any of the
nodes of X, we can view D as a divisor on Pl. Hence, there éxists a function
f e K(Pl) éuch that (f}) = D on Pl. {(Recall that on Fl, deg(D) = 0 is the only
condition for the existence of such a function.) Moreover, this f will be an
elemept of K(X) if and only if f(bi) = f(ci) for all i. We can restate this
discussion equivalently in terms of mappings.
Suppose we define the mapping:

-*)g

i: Div (X)) —m—m———— (T =: J, the Jacobian of X

D —t (f(bl)/f(cl), B ,f(bg)/f(cg))

0 1
where Div (X) = {D of degree 0 on X, not containing any nodes} and f € K{(P")
is such that (f} = D. Then, it is easily shown that i is a group

homomorphism from the additive group Divo(x) to the multiplicative group

)2,
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- 0 .. ;
fheorem 17: (Abel's Theorem for X) D e Div (X) is the divisor of a function

' *
in K(X) if and only if D € Ker{i), if and only if i(D) = (1,...,1) € (€ )5.

There is yet another manner in which to express this result. If we let
] = anxk be an effective divisor, we can construct a divisor of degree 0 by
ﬁoosing any smooth point X, € X and forming D - deg(D)xo. Then, we have a
s;econd mapping: ?: Div(X) ——— (E*)g =; J where Div(X) = {all D on X, D
wntains no nodes} defined by ¥Y(D) = i(D - deg(D)xo). In particular,
suppose D is an effective divisor of degree 1, i.e., D = x € X, and take
{ =%, Consider the function f(t) = t - x. Notice that (f) = x — % =D — ¢,

0

fhen, by definition, ¥Y{(D) = i(D - o)

(f(bl)/f(cl),...,f(bg)/f(cg)

((bl-X)/(cl—X),..-,(bg—x)/(cg—X))-
Jecause i is a group homomorphism, we can extend ¥ to a map on all effective

jivisors:

nk . nk
P(Znx ) = (ﬁ {(bl—xk)/(cl—xk)) ,--.,i ((bg-xk)/(cg-xk)) )

fhis mapping ¥ is called the Abel-Jacobi mapping.
For those more familiar with the theory of smooth algebraic curves, the
lame of this mapping should ring a bell. In fact, on a smooth algebraic curve

3 of genus 2, the Abel mapping +: § — CZ/A is defined by

P p

Py = ( [ w ( 02)(modd) where P0 is some fixed point of S, and «

; 1’ and @
Py Py .

1 2

ire the basis elements of the vector space RI(S) of all differentials of the

first kind on S. It may be asked if this mapping, when applied to X, is the
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ame as that defined by ¥. In fact, we can show that the mapping on XO =
smooth points of X} ¥: XO —_— (C*)2 defined by

{x) = ((x—bl)/(x?cl),(x—bz)/{x—cz)) presented by Lax for singular curves X
f genus 2 is in fact equivalent to the Abel mapping ¥ above when v is applied

o0 X, a singular curve of arithmetic genus 2.

For a 2-nodal rational nodal curve formed by identifying b1 and cl, b2

nd c, on Pl, we have seen that the dualizing differentials are:
L= dx/(x—bl) - dx/(x—cl) = (bl-cl)dx/(x—bl)(x—cl) and
9 = dx/(x-bz) - dx/(x—cz) = (bz—cz)dx/(x—bl)(x—cz). Moreover, wi has poles
o bi and s and no other poles, such that Res wi = +1, and ReS‘wi = -1,
b, C.
i i

E
. First, we must establish that the spaces (C )2 and czlA , where A is

he lattice of periods of w, and w,, are isomorphic as groups, and describe

‘he isomorphism. Recall that in the case of a smooth algebraic curve of genus

., there are four cycles A_,A

1 2,31.32 around which the basis vectors {ml,ma}

£ ﬂs are integrated to construct the lattice of periods of wl and wz.

Fig. 8

owever, notice that when we construct a 2-nodal rational curve, two of these
eriods are lost in the identification process on Pl, namely the periods a
nd a, in the preceeding diagram are deformed to a single point. Henée. in
‘orming A& for X, there are but t@o cycles to integrate ml and wa around. 1In
act, more can be said about the generators of A. Let P0 be any fixed base

oint in X, such that P0 * bl'cl'ba'cz' Consider: A, and A, are the two

1 2
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.. . . - -1
weles around which Wy and w, are to be integrated. Since X =, and we have

Fig. 9

1
| parametrization #; B —— X, suppose we pull Al and Az back to Fl. Then,
fl(Ai) either winds once around bi or once around cy in Pl. Let's suppose

Tl(Ai) winds around bi for i = 1,2. (The other cases are the same.) Then,

_{ w,o= 2ni(st(w1)) = 2mi; { w, = 0
T (Al) 1 13 (A2)

{ w, = zﬂi(Rgs(wz)) = 2mi; S w, = 0.
n 1Ay 2 nla)

lence, the period lattice is generated by {2mi,0)} and (0,2mi). Thus,

| = <(0,2mi), (2mi,0)>, and €2/4 = €2/<(0,2mi),(2mi,0)>

R

C/<{0,2mi}> ] c/<(2mi,0)>. But,

onsider the following sequence:

inclusion inclusion e *
0 ——— <2mi> y C + C v {1}
I i, : i,
his is an exact sequence. Therefore, we know (from the theory of exact
* . 2 * 2
iequences) that € =~ C/<8wi> . Hence, C€°/A = (C ) as desired.

With this in mind, we would now like to show that 4+ and ¥ actually map
*
ny point P € Xo to the same element of (C )?. Let A = <(2wi,0),(0,2ri)> and

onsider the sequence:
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inclusion inclusion 2 x 2
0 y A » C —1' (c ) ——t {1}
| 1, (z,w) ——0s (eZ,e") 4

*

. 2 2
iis is an exact sequence. Hence, L€ /A4 = (C) under the isomorphism i3.

W, Suppose P € xo is any point in XO. Then,

e €2/A > (C*)z
P p Jo  Jo,
Yo { jpowl. jpowz ) = (log((x-b,}/(x~c,)),log((x-b,)/(x-c,)) » (e ",e )

ierefore, T(P) = ((x—bl)/(x—cl),(x—bz)/(x—cz)) = P(P) as desired and the
el mapping and the map defined by Lax actually coincide for 2~-nodal rational

yidal curves. O

With this proof, we see that in fact the Abel mapping for smooth
lgebraic curves has an equivalent formulation on rational nodal curves X. In

ldition to this observation about ¥, there are some other facts to notice:

iIcts: 1) On effective divisors of degree 1, ¥ gives an injection
_¥ o
: X - {nodes} —80w0w.— (C )°.
2) If 1 <m< g, P gives a mapping:
..M *g
¥: EffDiv (X) —— (€ )
. m . ,
lere EffDiv (X) is the set of all effective divisors of degree m on X, such

*
l1at the image of ¥ is an m-dimensional subset of (C )g.

— x
Because Y’(EffDivg 1(X)) has dimension g-1 in (C )g, we expect that the

lage space will be the zero set of one analytic function of g variables. In
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act, we can explicitly describe this function:
( } i -
1 Al c 1 Ag
T (Al, .,Ag) = det
- -c A
b1 clAl b cg g
&L el g-1_.g-1
b1 cJ Al bg cg Ag |
*.g
et @ denote the zero set of T (e c (€ )°).
egmma _1: Suppose xl,...,xg € XO. Then x1 + ... + xg - e is (equivalent to)
n effective divisor (of degree g-1} if and only if
TX(P(xl + ...+ xg - ®)) =0,
roof: I refer the reader to [9, p.3.251]. O
. g-1
orollary 8: TX(P(EffD1v {X})) = 0.
' . g1

roof: Suppose Xy + ...t xg_l € EffDiv (X). Then,
1 + ..t xg_1 + o -« is equivalent to an effective divisor and by lemma 1,
x(‘P(xl + ...+ xg_l)) = 0. 0O

"With this mapping Tx’ we now can state a result fundamental to the study
f the distribution of the Weierstrass points on X. In fact, this lemma gives
criteria for establishing when a point P € ¥ Is a (smooth) Weierstrass point

f a given divisor D of X. Namely:
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1 -
Emmﬂ—3= ([7], Lemma 2, p. 113) Suppose g = 2. Suppose D is a divisor on X
F.

quch that L((®) - D) = {0}, i.e. D is not special. Let s = dim(L{nD)) > 0. P

s a smooth Weierstrass point of D of order n if and only if £(D) (F(P))°

il

31,A2) satisfies rx(Al,Aa) = 0,
E_o__o_ﬁ:

Since D is not special, by the Riemann-Roch formula we have:
v = dim(L{D}) = deg{(D) + 1 - g, We can rewrite this as:
ﬁ) deg(D) - s =g - 1.

When P is a Weierstrass point of D, dim(L(D - sP)) > 0. Therefore, we
Qn find an f € L(D - sP). Consider the effective divisor D' = (f} + D - sP.
Notice this is effective since (f) includes a factor s'P where s' 2> s,

?nce f € L(D -~ sP). Hence, this factor s'P cancels the factor sP of D',
\i

aking the coefficients of all other points P of D' positive.) We have that
eg(D') = deg{(f)) + deg(D) - deg(sP) = deg(D) - s since deg{(f)) = 0
ecause f € L(D - sP). When we are in the situation in which g = 2, by (a)
bove we have:- deg(D') = deg(D} -~ s =g ~-1=2~-1=1, Thus, D' = (Q € ¥,

nd by Corollary 5, ¥(D') € &. But,

Y (D" ) P((f) + D - sP)

P((£))P(D)F(-sP) since ¥ is a group homomorphism

(1,...,1)?(D)P(-sP) by the Abel Theorenm

P (D) (P(P)) S,

ence, ¥(D)(F(P)) ° &€& if P is a Weierstrass point as desired. O

Earlier in this section, it was hypothesized that the set
o

(D) = u {P | P is a W-point of D of order n on X} was not dense on X. In
n=1 :

ict, R.F. Lax established the validity of this claim for a specific case of a
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~nodal rationai nodal curve in [7}. Considering the rational nodal curve X
ormed by identifying the poin;s -3 and 0, -1 and 1 on'Pl, Lax found that
here exists a divisor D on X such that none of the Weierstrass points of D on
lie within the disk |z - 5/8] = 1/6 on el Hence, W{(D) is not dense in

The question still remains, however, where the Weierstrass points of X are

ctually located. It is with this question which we will concern ourselves in

he next section.
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II. Distribution of Weierstrass Points on 2-nodal Rational Curves
A. A Specific Example

Consider the 2-nodal rational nodal curve X formed by identifying the
1

oints b1 = -3 and ¢y = 0, b2 = -1 and 02 =1 on P . On this curve, it is
nown that the set W(D} of all Weierstrass points of all orders n is not
ense. Using numerical methods, it is possible to locate the Weierstrass
cints of X and plot their distribution in Fl. The result which allows us to
o this is Lemma 2, stated in the previous section.

In the example under consideration, we are in the situation in which
= 2, and by the lemma, the smooth Weierstrass points of a divisor D are the

oints P such that ¥(D){P(P)) % = (A;.A,) satisfies 7, (A;.A,) = 0. To

egin our investigation, we must determine D, Y(D)(P(P))—S, and Tx(Al,Az). By

efinition,
1-a 1-A
A = = ~
Tx(ﬁl,uz) det 1 2 2 Al 4A_ + A1A2
-3 -1-A2
onsider f(z} = (z + 3)z(z + 1)(z - 1} + k, where k € C is nonzero. This is

rational function on Pl such that £(-3} = f(0) = f(-1) = £{(1) = k. Let D be
he divisor of zeros of f(z}) on X. Then, deg(D) = 4 > 2g - 2 = 2., which
mplies dim(L{(w) - D) = 0, as is required by the lemma. Because D is not of
egree 0, we must consider ¥(D - 4-®) = ?(D)(P(W))_4. But,
(w) = ((bl - 66)/(C1 - 5)-(b2 - 66)/(c2 - ®}) = (1,1). Moreover, since

eg(D} = 4 = deg(4-«), this implies deg(D - 4-<) = 0 and for some f € K(X)},

~ 4+ = (f}. Therefore, D = 4:% and by the Abel Theorem, ¥(D} = P{4-®} =

1,1). Tr{us, P(D)(P(P))° = (1,1)(P(P))"° = {(#(P))”S. Moreover,

"(P) = ((by = P)/(c; = P), (b, ~ P}/(c, = P)} = ((P + 3)/P,(P + 1)/(P - 1)).
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- . .~S s s
herefore, (r(P}) = ({P/(P + 3)) ,((P - 1)/(P + 1)} ). From the lemma, the

mooth W-points ole of order n are those z € Pl satisfyingz
1) 0 =2+ (2/(2+3)° - 4((z-1)/(2+1))° + (2/(2+8))°((z-1)/(2+1))%,

here s = dim(L{nD)) = 4n-1 by the Riemann-Roch formula for singular curves.
After writing a program using Newton's method to determine the zeros of
his funetion for an arbitrary n, it is possible to, and we did, generate a
}aphical representation of the n-W-points of X for n = 1,...,8. (See table
nd figure,)
In considering the first few values of n, a pattern seems to emerge. As
increases, the W-points of order n seem to tend toward the lines Re(z) =0
nd Re(z) = -3/2. Since W(D) is an infinite set of points on a compact
urface, we know that W(D) has a set of 1limit points.  The above

onsiderations suggest the following:

heorem 8: The smooth limit points of the set W(D) for the D constructed
bove on the rational nodal curve X formed by identifying the points -3 and O,

1 and 1 in Pl, lie on the perpendicular bisectors Re(z) = -3/2 and Re(z) = 0

f the segments -3,0 and -1,1 respectively.

roof: The proof of this theorem will consist of two parts, each of which

i1l establish that within a certain region, none of the limit points of W(D)

an be found.
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1) We first consider the polynomial fn(z) obtained by clearing

mominators in (1}:
(z) =z (z - 1) + 2%z + 1)° - 4z - )%z + )% + 2(z + 1%z + 3)°.
]

e roots of this polynomial are the smooth W-points of X of order n in the
nite part of ml. {(There is also a Weierstrass point of weight 2 at. <« for
1 n.) We claim that none of these roots lie within the strip

/2 < Re(z) < 0.

For any z within the strip, |z + 1‘ < |z - 1}. Using the triangle
equalities,
$ s S s s
@2 4alz -1z + 3% - 2%z - 1] - [2lPlz + 1]° - 2]z + 1)%z + 5

w, for Z in the strip, the inequality given above implies

h(z)] > 2{z - 1|s(|z + 3|S - |z[s). But, in the strip, [z + 3] > ]z].
nce, |z + 3]5 - [z{S > 0 for all s. Therefore, [fn(z)[ > 0 for all integers
which indicates that f_(z) # 0 for all z in the strip.

2) To complete the proof of the theorem, we will showlthat there exist
rclés to the fight of Re{z) = 0 (and to the left of Re(z) = -3/2) in which
e no W-points of X for n large enough and that as s = 4n-1 —» %, these
rcles approach the desired vertical line. Then, in conjunction with part
, this will imply that the limit points of W(D) lie on Re{z) = 0 and Re(z) =
/2.

The function gn(z), the zeros of which are n-W-points of X, can be

ctored as:

) gn(z) = (z/(z+3))s((z-1)/(z+1))S + (z/(z+3))S - 4((z-1)/(z+1))S + 2

= (2/(2+8))%((z-1)/(z+1))° + (2/(2+3))° - 4((2z-1)/(2z+1))° - 4 + 6
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((z-1)/(2+1)) [ (2/(2+3))" - 41 + [(2/(2+3))" - 4] + 6

[((z - 1)/(z + 1)% + 111(2/(z + 3))5 - 4] + 6

e want to find regions in which lie no zeros of this, given s.

Suppose we rewrite (2), taking absolute values of both sides:
3) [((z - 13/(z + 1)° + 1}|(z/(z + 3))° - 4] = 6.

f the product on the left of (3) is < 6 {(or > 6) for all z in some region,
hen there will be no zeros in that region.
Let uw= (z - 1)/(z + 1). By the triangle inequality, we have:
[((z ~ 1)/(z + 1))% + 1] = [u® + 1] < [u]® + 1.

or small ju} < 1, we can make lus + 1| arbitrarily close to 1. But, if

= {z - 1)/(z + 1), then z = {u + 1}/{(1 - u). Hence, z/{z + 3) can bhe
gpressed as {(u + 1)/{(4 - 2u) and I(z/(z + 3))S - 4| becomes

{{v + 1)/{a - 2u))S —‘4] in the u-plane. However, as ]u[ gets smaller,

(u + 1)/(4 - 2u)} — 1/4. Thus, given any s, [((u + 1)/{4 - 2u))S[ is
ounded above, i.e. there exists a bound B{s) such that if ]u!_g B(s), then
((z -~ 1)/{(z + 1))S + 1|} {z/(z + 3))S ~ 4] < 6 and there are no gzeros inside

u| = r ¢ B(s).

S S

-1 < juf

Above, we saw that iu + 1< (B(s))® + 1. Notice that as
— ©, we can take B(s) closer to one, and the desired inequality will still
old. As s — =, we must consider |u] =r — 1*_in the u-plane.

Notice that z{u) = (u + 1)/(1 - u) is a linear fractional
ransformation. Suppose we consider the domain ju} < 1/2. Under z(u), the

iterior of |u| = 1/2 maps to the interior of {z - 5/3] = 4/3 in the

-plane. (8See Fig. 10.)
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n the other hand, the image of the interior of Su! = 1 under z{u) is the half

lane Re(z) > 0. (See Fig. 11.)
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Thus, as iu] —5 1, the circles approach the vertical line Re(z) = 0.
otice that as s —— %, B(s) — 1. Hence, as s — <, the circles approach

e{z) = 0. Because none of the W-points for n sufficiently large lie within
hesé circles, none of the limit points of W(D) lie to the right of Re(z) = 0
s n — %, and with part 1), this implies they lie on Re(z) = O.

On the other hand, suppose we let v = z/(z + 3). By the triangle

nequality, |(z/(z + an® - 4| = ivs - 4f > ivis - 4. So, for large values

£ v, |vs| - 4 can be made arbitrarily large. Again, if v = z/{z + 3), then

= 3v/(1 - v). Then, {z - 1)/{z + 1} can be written as (4v - 1)/(2v + 1).

ence, !((z - 1)/{z + 1))5 + 1! becomes l((4v - 1)}/(2v + 1))s + 1] in the
-plane. Notice that as |v| gets larger, |(4v - 1)/{2v + 1)] — 2. _Thus,
iven any s, [((4v - 1)/(2v + 1))° + 1| is bounded below, i.e. there exists a

ound B(s) such that if ]v] > B(s), then
((z—l)/(z+1))S + 1||(z/(z+3))S ~ 4| > 6 and none of the zeros lie outside of

he ecircles |v} = k > B(s).
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: s '\ s . 5 ..
Notice that since iv - 4i 2 ivi -4 ; (B(s)) - 4, as 5 — ®, we can

take B{s) closer to one to ensure that !((4v-—1)/(2v+1)')S + 1E!vs

- 4] > 8
still holds.

Suppose, as before, we consider the images of some circles in the v-plane
as transformed under z{(v) = 3v/(1 - v) to the z-plane. First, look at

[v] = 2.
///:;// =0y

S

ZL V77
o T

On the other hand, if |v| = 1, Z-plane

Fig., 12
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Thus, asllvl —+ 1", i.e. as s — ®, the images of the circles in the
1-plane under z{v) approach the vertical line Re(z) = -3/2. Moreover, none of
he limit points lie to the left of Re(z} = -3/2, since none of the n-W-points
lie outside of the circles ivi = k { B(s) for all s and the exterior of ivi =
., corresponding to s at %, maps to the left of Re(z) = -3/2. From the
‘esults of part 1), this indicates that the limit points of W(D) lie on the

.ine Re(z) = -3/2, as well as on Re(z) = 0. 0O

What is the significance of the fact that the limit points of W(D) lie on

he vertical lines Re(z) = 0 and Re{z) = -3/2? Recall that in the case of a
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pooth curve (Riemann surface), every point on the surface was a limit point
f a sequence of W-points. In other words, W(D) was dense on S. However,
ien we move to this particular case of a 2-nodal rational nodal curve on
iich there exist singularities, the situation proves to be quite different.
sre, the set of all n-W-points is not dense on X. Rather, the limit points

je strictly on the wvertical 1lines Re{(z) = 0 and Re(z} = -3/2.
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! B. The General Case

Having established the validity of the claim that the limit points of the

% of all n-Weierstrass points for the rational nodal curve X formed by

entifying b1 = -3 and ¢, = o, b2 = -1 and 02 = 1 on Fl, lie on the
rpendicular bisectors of the segments b101 and bzca, we may ask what the
ture of the situation is for a general 2-nodal rational curve. Whereas in

r specific example the points of identification were all real, in the

b and ¢, would be any points on the projective line Pl.

meral case, bl,cl, X 2

ion identification of these points, a rational nodal curve of pgenus 2 will
ve been constructed on which there exist singularities, each of which is a
:jerstrass point of high weight for the curve. However, as in our specific
se, there also exist n-Weierstrass points which are not singularities.
ding an infinite set and lying on a compact surface, the set W(D) of all
derstrass points of order n for all n has a set of limit points. To locate
ese points, we again turn to Lax's discussion., WNotice that for our specific
se, the tool which allowed us te locate the W-points using numerical methods
s @ lemma which applied to any rational nodal curve. Hence, we can also use
s result (Lemma 2) in our present discussion.

According to the lemma, the smooth Weierstrass peints of a divisor D are
e points P such that ‘!"(D)(‘."’(P))“S = (A,,A_ )} satisfies Tx(hl,ha) = 0. By

12
finition,

1- -
A 1 A2

f—
]
j=H
@
ct
[y

b b

17%1% 2%
(1-a)(b, - cA,) = (1 -a,)(b, - cA,)

= b - b + C A A b, + c,A, - b,A,_ - clA1A2

2 2"1%2.7 Y1 T MM i'2
o ~ bl) + (cl - bz)z\1 + (b

2 T Gty
(b

1 cz)/\-2 + (¢, - cl)AlA

2 2
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onsider f{z) = {z - bll(z - cl)(z - bz)(z - cz) + k where k € ¢ is nonzero.

his is a rational function on Pl such that f(bl) = f(cl) = f(b2) = f(cz) = k.

Ir

gt D be the divisor of zeros of f(z) on X. Then, because deg(D) 4 > 2g-2 =

dim(L({w} - D)

0 as desired. Because D is not of degree 0, we must

P(D)P (o) 4. But, we saw in the previous section that

onsider (D - 4-«)
{*¢) = (1,1). Moreover, since deg(D) = 4 = deg(4:%), as before in the example
f the previous section, D = 4-«. Hence, ¥(D) = ¥(4:*) = (1,1} and

D)(P(P))"° = (P(P))"°. By definition, P(P) = ((b ,-P)/(c ~P),(b,-P)/(c,~P)).
LA

herefore, (A = (((cl—P)/(bl—P))S.((cz—P)/(bz—P))S), and from Lemma 2,

1 2)

he smooth Weierstrass points of X of order n are those z satisfying:

0 = (by-b,) + (cl—bz)((cl—P)/(bl-P))S ¥ (bl—cz)((cz—P)/(bz-P))s +

S S
(c,=0,) ((e,=P)/ (b -P)) ¥ ((c,=P)/ (b,-P))

here s = dim(L(nD))} = 4n-1 by the Riemann-Roch formula for singular curves.

Using this information, we can prove the following:

heorem 8: Assume that bl’cl'bz’ and <, in Pl are four distinct points on

he projective line. Then, the limit points of the set of all n-Weierstrass

pints for the divisor D constructed above of the rational nodal curve X

ormed by identifying b1 and Cy b2 and ¢, on Pl, lie on the perpendicular

isectors of the segments blc1 and bzc2

Before beginning the proof, it is important to realize that there is a
ignificant difference between the situation in the case of a smooth algebraic
arve and that of the case of a 2-nodal rational curve. Recall from our

arljer discussion that for a smooth curve (Riemann surface), every point on
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%e surface waé a limit pofntAof a sequence of elements of W(D). In other
;rds, the set of n-W-points of the surface S5 for all n was dense on S.
gwever, we have just seen that there exists a rational nodal curve X and a
jvisor D on X such that W(D) is not dense. Yet, this is not a special case.
pn fact, after numerically analyzing two other situations, each a variation of
ﬁe first, the hypothesis is given a so0lid foundation.

In constructing other rational nodal curves for investigation, it was
pportant to make each sufficiently different from the first, as well as each
ther, in order to better establish that our hypothesis does indeed have
ibstance. First, notice that in the example given previously, the intervals
-3,0] and [-1,1] overlap. Hence, as a second example, suppose the points of
jentification are: b, = -3, ¢, = -1, b2 = 1, and C, = 2. In this case, the
ttervals [-3,-1] and {1,2] do not overlap, yet the points are still purely
:al. Moreover, using the numerical methods described earlier and graphing

1 results, (see graph and table)} we again notice that as n becomes larger,

1e set of n-Weierstrass points approaches the perpendicular bisectors

:(z). = -2 and Re(z) = 3/2 of -3,-1 and 1,2 respectively. Therefore, it
:ems that the theorem holds if all of the points of identification are real.
wever, we indicated that the points could be any elements of Pl. Realizing
1is, as a third example, the identifications b1 = 0 and c1 = ;, b2 = i and

, = 2 were made. Upon determining the roots of the appropriate polynomials

id graphing, we see that the n-Weierstrass points tend to be approaching the

trpendicular bisectors of 0,1 and 1i,2 as predicted. It is with this

:rong encouragement that we proceed to the proof of the proposed theorem.

:pof of Theorem 9:

We have determined that the equation of the function whose zeros are the
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-points of X is given by:

£,(2) = (b,=b) + (b -c,)((c,~2)/(b,~2))° + (c,-b,)}((c ~2)/ (b -2))°

+ (eyme ) ({e,=2)/(b;~2)) % ((e,=2) /(by=2))°
here s = 4n-1. Suppose we let u = (z - cl)/(z - bl) and let
= (z - cz)/(z - bz). Then, we can write fs(z) as:
1) fs(z) = (bz—bl) + (bl--cz)vs + (cl—bz)u2 + (cz—cl)usvs

llowing s to approach &, we would like to find regions in which there lie no
-W-points for n sufficiently large.
1 .
Suppose we fix z arbitrarily in P . This will fix u and v to constants.

ow, let s — o (i.e., n — «). There are four cases to consider.

i

Case 1: Suppose that z is such that |uj < 1 and |v] < 1. We know that

bz—bll. |b1—c2[, [cl-bzl, and |c2—01] are all > 0, because bl’ b c and

2’ 1’

, are all distinct points. Moreover, [u]s and lvls are > 0 for any choice of

, but < 1 for all s. Thus, we can find an S, ~ 4no - 1 such that if s 2> So'

€) [cz - clllu!S{V!S < 1/8 jbz - bli

S
le, = b,}ul® < 1/3 |b, - b|

[b, - e, [|v]® < 1/3 |b, - b|

1l
Notice here that the closer that both !u! and !v! are to 1, the larger

1

{11 be the necessary value of s, to make these inequalities hold. In this

ise, to determine s , let A = max{lc, - ¢ ],le, - b T,!bl - ¢ |} and

2 1! [ a1 o1

8 .
= max{]u,, ]v]} ( < 1}. Then, for some Sy aB ° = 1/3 ]bz - bll. Taking

le natural logarithm of both sides, we have:
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S :
0 1 1
log(AB °) = log(1/3 |b,-b,|)

log(A) + solog(B) = log(1/3) + log(|b2-b1|)

s, = (log(1/3) + log(jb,=b ) - log(A))/(log(B))

Keeping (*) in mind and using the triangle inequalities, we have:

(AV

fs(z)] |b2—b1| - ](cz—cl)usvS + (cl—bz)uS + (bl—cz)vsl

2 fby-b,| = {Jopmoy [u}®]v|® + (e b )u + (b,-c,)v®|)
2 }bg—bll - |02—01]|u|slv|s - {lcl—b2|1u|s * Ibl—czllvls}

s s s s
= [by7by | = Joymeg [l 1vl® - o byl ul® - |b;-c,||v]

t conjunction with the set of inequalities‘(*), this implies: )

[£,(z)] > Jb,~b,| - 1/3 [b,-b | - 1/3 |b,-b,| - 1/3 [b,-b | = 0.

*om this, we find that fs(z) # 0. Recall that a point z is an'n—W—point of X
£ and only if fs(z) = 0 where s = 4n-1. Thus, considering the above, for
iy z such that |u] < 1 and |v} < 1, there exists an integer n, = (s +1)/4

ich that z is Hot a W-point of order n for all n ) ng- (If (so+1)/4 is not

1 integer, take the next largest‘integer closest to (so+1)/4 as the value of
) Then, the results will still hold.) Hence, any z in the region
t [u] < 1, |v| < 1} 1is pot a limit point of W(D}, as it is not even an

‘W-point of X for n sufficiently large.

Where do such z lie in the plane? If Jul < 1 and lv| < 1, this implies

z-c )/(z-b)}| <1 and  |(z-cy)/(z-b,)| < 1, i.e., |z-c,| < [z-b,| ~and

:—02|.< Iz—b2|. Geometrically, we know that the points z such that
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;-bli = Iz—CI[ lie on the perpendicular bisector fl of the segment b.c,.
jkewise, if z is such that iz—czi = iz—bzi, then z lies on the perpendicular
jsector 22 of b202 . Now, since [z—cil < |z—bi[ for i = 1,2, such z lie to

he right of fi, i.e. on the side of fi on which ci lies. Thus, the situation

s as follows: ~ cﬁ__
- -
Y b '
» ~ [ ]
b, ~ N R 2,
~- - =
-_- T~ [ ] <. .
’_,f / / \7L7L‘
/
A
2
Fig. 14 *

In the hatched quadrant, none of the limit points of W(D) can be found.
Case 2: Suppose now that z is such that ]u| > 1 and ]v| > 1. Before
e proceed, since Ju| # 0 and |v| # O, which implies u # 0 and v # 0, we would

ike to rewrite f_(z) = 0 by dividing through by uwSvs;

= £.(2) = (by-b,)(1/u))°(1/9)° + (b,~c,) (1/wW)® + (o,=b,) (1/v)° + (c,-c.).
ow, using the triangle inequalities, we have that:
£ (2)] 2 |e,-c | - [(bz—bl)(l/u)s(l/v)s + (bl-cz)(llu)s + (cl-bz)(1/v)8|

> eymey| = {lby by [[1/7u] %179 + [ (b =c,) (1/m)® + (o;-b,) (1/V)F]

s s s
> |cz—cll - ]bz—b1||1/u| |1/v]™ - {Ibl—cz]lllu|

s
+ |cl-b2||1/v\ }

S S S s
= Jogmey] = Iby=by [ [1/u][1/9]% = [b=c,|{1/u]® = [c,-by|[1/v]°.

ecause |v] > 1 and |u| > 1, we have that {1/u| < 1 and |1/v] < 1. Therefore,
e are back in the situation of case 1. Following a similar argument as

bove, we find that for all z in the region {z | Ju| > 1, |v| > 1}, z is not
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, limit point of W(D).
% In the plane, consider: iu! > 1 implies E(Z—Cl)/(z“bl)! >1, i.e.
I
g—cll > |z—b1|. Likewise, Jv| > 1 implies |(z—02}/(z—b2)| >1, i.e.
E-czl > ]z~b2|. From this, we can see that the z which satisfy these

onditions lie to the left of both 81 and 82, which is the side of 81 and 82

n which b1 and b2 lie respgctively. Pictorially, we have:
1

S/

— .--\—-_- .C|
— — = ~
~.
—_— T
--___________'___“_‘-ﬁw ~
Fig. 15 Az

Within the hatched region, none of the limit points of W(D) can be found.

Case 3: Now, consider the case where z is such that ju| > 1 and |v] < 1.
gain, to bring us back to the familiar case 1, we would like to rewrite (1)
y dividing through by us. which is allowable since {u]j # 0 implies u # ©.
o, we have:

¢ = fs(z) = (¢

2—c1)vs + (ey-b,) * (bl—cz)vs(l/u)s + (bz—bl)(l/u)s.

y the triangle inequalities, we then have:

] S s
l1/ul” - Ib,-b I l1/ul”.

s
]fs(z)[ 2 Icl_bgl - lczfclljvl - lb1~02]!v! 2 9

ince Jul > 1, we know that |1/u] < 1. Also, lvl < 1 and we are in the
ituation of case 1 again. Under an argument similar to that given for the

irst case, we find that none of the limit points of W(D} lie within the

egion {z | fu] > 1, Jv] < 1}.
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Where does this region lie in the z-plane? Since iui > 1, we have

(z—cl)/(z—bl)l > 1, i.e. [z—cll > |z—b1[ and such z lie on the side of ¢, on

hich b, lies. Also, {vi < 1 implies jz~cai < |z~b2[. These z lie on the

ide of 82 on which c, is found. The picture is thus:
- C,

/

Fig. 16

Again, in the hatched region there do not exist any limit points of W(D).
Case 4: Finally, consider the situation of a z such that ju} < 1 and ]vl

1. As in cases 2 and 3, we can rewrite fs(z) by dividing through by

S(# 0}:
0 =t (z) = (b,-b)(1/v)° + (b.-c,) + (¢ -b )u’(1/v)° + (c_-c_)u®
s 2 1 1 2 1 2 2 1 )
oreover, the triangle inequality yields:
R s s s s
ifs(z)i Z lbl_czl - }bg"bllll/vl - Icl_bgllul ll/vl - |02—cll|u| .

ere, since jvi > 1, we have that il/vi < 1. In conjunction with the fact
hat lu! < 1, we again are placed back in the situationkof case 1, which
mplies that, under similar argumentation, none of the limit points of W(D)
ie within the region {z | |u| < 1, |v] > 1}.

To see this pictorially, notice that, as before, iui < 1 implies
z—cll < |z—b1| and such z lie on the side of €., on which ¢, lies. Also,

1 1

vl > 1 implies |z—c2| > |z—b2] and these z lie on the side of ¢, on which
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bz lies. And so, we have:

Fig. 17

Within the hatched region, one cannot find any limit points of W(D).

Considering these four cases simultanecusly, we see that none of the

imit points of the set of all n-W-points of X lie in the four quadrants into

hich Pl is divided by the perpendicular bisectors of blc1 and bzc2 . (See

igure). Hence, since there do exist limit points of W(D), these limit points

ust lie on 81 and 82, the perpendicular bisectors of b,c and b,.c

171 22
«Cx Frovin coke 3, We Saw  Haad

espectively. O o nowvie of Hie Linatr pouats
. of WDy tau be
by N_  Pund w Has .o
Case 2 showed Haad reqion. _—— ke
novie of Hu it powvaty - — " »
of WD) W& heve._ . —T 7 C

—

- 2 Cﬂ_;:l)HOWCOF'HﬂL
_ 3y CCL'Sﬂ""-’) S b)l{w.'u- peints of Wb
None of Hie Limit poing e herve.
of Wi(bp) W& here. N 2
>
Fig. 18
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n=1
1537 + .56731
.9314 + .7819i
n_=.2
.0808 + ,7943i
.6557 + ,3388i
.3256 + 2.91151
.0520 + .2277i
.2566 + 2.0509i
7415 + 1.17831
n=23
.0381 + ,45611
.1075 + -1.5508i
.0321 + .14361
.8160 + 2.3047i
.0551 + .8650i
.5963 + .2148i
.6140 + .6818i
.3866 + 3.35601
.6647 + 1.2907i
;8172 + 4.83061
n=4
.0308 + .57691i
.0668 + 1.3743i
.0234 + .10501
.5766 + .48621
.5923 + .86361
5700 + .1573i
.6999 + 2.0517i
.0418 + .8995i
.0255 + .3247i
.6252 + 1.3454i
.1392 + 2,2388i

Appendix A
Smooth Weierstrass Points for X

-1.9039 + 3.32291

.5280 + 4.62711
-3.

3321 + 6.72201

n=25
.0337 + .92001
.0804 + 1.8451i
.55561 + .1241i
.5652 + .65691
.0184 + 08281
.0194 + 25311
.0217 + .43851
.0260 + .6530i
.5582 + .37931
.5780 + .9781i
.6009 + 1.37751
.6447 + 1.92041
.0483 + 1.28371
.1725 + 2.90361
.7411 + 2.7558i
.9974 + 4.30071
.6776 + 5.8866i1
-8575 + 8.60591
n==6
.0151 + .0684i1
0157 + .2078i
.0170 + .3553i
.0191 + .5180i
.0226 + .70561
.0282 + .933851
.5454 + .1025i
5471 + .3114i
.5509 + .53261
.5573 + 77631

.0878 + 1.22851
5677 + 1.05741
L0558 + 1.64301
.2066 + 3.55791
.0948 + 2.2989i
.6669 + 2,4584}
7848 + 3.4350i
.5845 + 1.3985i
L0951 + 5.2580i
.3888 + 10.48681
.8381 + 7.1412i
n=7

.0129 + .05821
.0132 + .17631
.0140 + .2993i
.0152 + .43131
L0171 + .5772i
L0199 + .7443i
.5386 + .08731
.5897 + .26431
5419 + .44871
5457 + .64651
.0243 + 94321
.0637 + 1.98951
.0425 + 1.51961
.0311 + 1.19183i
.1096 + 2.7436i
.2411 + 4.20651
5513 + .86531
.5931 + 1.78481
(5727 + 1.4134i
.5598 + 1.11561
.6273 + 2.27571




1.6906
2.1961
1.8282
1.9236
.9929

I+ 1+ 1+ I+ %

2.97691
6.20311
4.1012i
12.36641
8.39351

8

0112
.0114
.0119
.0127
.0139
L0155

1+ 14 1+ 1+ 1+

1+

05071

.15321i
.25891
.37031
.49041
.62321

.0213
.0342
.0718
L2757
.5336
. 5358
.5416
.5536
.5790
.6422
.8719
.3000

[ N T N T S I S I S I N I S I N B N I S I
E R O N e

1+

.95031

1.
2.
4,

43621
32841
85181

.07601
.38821
. 73531

.1602i
.74521
.69681
.75981
.14021

.0263
.0474
.1246
.1560
.5343
.5381
.5466
.5639
.6026
.7150
.4607
.0179

I+ 1+ 1+

I+

I+ 1+ 1+ 1+ 0+ 1+ L+

1+

1.16451
1.80071
3.18281
9.64461
.22971
.55521
.9343i
1.4245i3
2.15181
3.48391
14.24521
L77391
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Appendix B

Smogth Wel Points for X Infini

n=131
4711 + .6960i

5289 + 3.67661
he=ae
6060 + .9517i
6987 + 9.1377i
8381 + 1.19211
1347 + .34691
5966 + 1.0547i
1259 + 3.0544i

n=3
12590 + .66461
2917 + 1.1657i
0738 + .22744
7190 + 1.59701
6584 + 1.02441
0190 + 14.5347i
13947 + 5.35101
10227 + .8491i
8648 + 2.8588i
6970 + .72261
n =4

.3550 + .8084i
.1473 + 1.18651
.0500 + ,1689i
.6850 + 7.52581
.9588 + 4.29341
.3562 + 19.89501
.6764 + 1,8106i
.6854 + 1.05871
.1484 + .50061
7572 + 2.7633i
.7016 + 1.0904i

13.
.0611
.0376
.0986
.2246
.4230
.9820
.8038
.6984
.6463
.0646
.9414 + .9697i

[\ T \S T A% T (O T N S " T o I A% R L 1

18.

.6352 + 1.11211
.2020 + .67991
.6415 + .5193i

n=258

7019 + 1.07861
.4959 + 1.1723i

6994 25.24201
5.65281
.13431
.4001i
.B85561
.8888i1
9.65891
3.80961
2.70791
1.94171

1.19001

I+ I+ 1+ 1+

1+

I+ 1+ 1+ 1+ 1+

I+

.6181 + 1.3504i
.5995 + .
2927 + .
.6110 + .

(=]
[ &)
(=
o .
|+

.11151

o
2
=t
[4)]
i+

.33291
.54891

(A
@
w o
[o2 I 4|
1+ 1+

.75411i
93961
1.09161
30.5828i1

11.72291
6.97781

=B S
L e |
[ T % T o
= O O
I S

I+ I+

2.8547 + 4.8042i
1.0114 + 1.1891i
2.7261 + 3.5320i
1.3605 + 1.2034i
2.0890 + .8568i
1.7361 + 1.10121
2.6031 + 1.5184i
2.5897 + 1,0843i
2.6615 + 2.67161
2.5797 + .70421
2.5916 + .3324i
2.3450 + .4745i

n=27
.0249 + .09531
.0550 + .28481
.1163 + .4713i
.2106 + .65161
.3408 + .8215i
.5100 + .9745i

18.3931 + 35.9197i
4.5838 + 13.87491
3.2744 + 8.2842i
2.9076 + 5.7714]

.7209 + 1.10081
1.5843 + 1.16511i
1.2663 + 1,2154i

.9743 + 1.18711
1.9035 + 1,01681
2.1850 + .7T611i
2.7562 + 4.31871
2.6093 + 2.0954i
2 + 2.6461i

.6382




6797
,5919
.5803
.5670
.5727
.5780
.3781

I+ 1+ I+ i+ 1+ 1+ I+

3.35191
1.64271
1,25461
.59701
,90851
.281714
.41061

.0213
.0441
.0904
L1612
.2582

I+ 1+ I+ I+

I+

.08321
.2489i
.41261
.57251
.7263i

[\“RE I S I e

=Y

.5392
.7269
.94171
.1973
.4706
.7531
.0229
.2505
.4005
20.
. 8865

7417

3.3830

.9617

I R R S N S S S

I+

i+ 1+

|+

.99971
1.10761
1.18481
1.21941
1.19791
1.10641
.93471
.68161
.36141
41.25451
15.97091
9.57931
6.72231

RN NN NN N NN NN

.6995
6490
L6177
.5970
.5829
.5731
.5662
.5612
.5679
.5581
7876
.3835

|+ 1+

I+ 1+ 1+ 1+ 1+ 1+

1+

T+ 14+ 1+

4
3
2
2
1
1
1

.00371
.22541
.62721
.14431
.73881
.38671
.07231

.78311

.24447
.5187]

5.

08351

.87031
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LOATING, ENVIRONMENT( 'REALARITH.PEN"') ]

ram CTransform(Input,Output);

{This program performs the calculation of the linear fractlonal
transformation which sends -3/2 to infinity, 0 to 0 and

1l to 1.

Written by: Kathryn Furio
Date: March 28, 1988
Revised: April 7, 1988}

Complex = RECORD
Re, Im:Double;
End:

Z, s1, s2, answer, numb: complex;
response:char;

LUDE ‘mcpack.pas’
n {program}

.Re:=0;

.Im:=1;

AT

iteln;

iteln{'Enter the number to be transformed.');
iteln('Real part cf Z: ');

adln(Z.Re);

iteln; ‘

iteln('Imaginary part ocf Z:');

adln(Z.Im);

iteln;

:=CMult(Z,C(5));

:=CAdd(C(3),CMult(C(2),2));

:wer-=CMult(sl CInverse(sZ));

iteln('The answer is ', answer.Re:1:7, '+', answer.Im:1:7,'i');
iteln;

iteln('Would you like to try another value of Z?2');
adln(response);

L response in ['N','n"'];

{program}




|

.4595 +

.3807 + 1.08551
L1067 +

.5000 - .4999i

.5021 - 51381

.6968 - .7540]

.9112 + 2.00441i
.4999 - 50011

.4733 +
..8810 + .1233i1
.4553 — .86541

.4387 + .28881
.5000 - .4998i
.2279 + 71121
.4999 - 50021

n=2
.39681

.58771

.1159]

n=3
.4724 + .4325]
L4811 + .22801
L4463 + 77541
.d836 + .07161
.4243 + 1,22301
.9243 + .26621

.53000 - .50011i
.4855 - ,2258]
.6073 - 1.48351
.5000 - .4999]
4776 - .69261
L7682 - .06581
.4832 - .0705i
.5111 + 3.04041

-

Appendix ©
Smooth Weierstrass Poipts for Example 3

.2222 + .8548i1
.4890 - .4812i
L7531 + 1.7791i
0674 + .55561
.1121 - 1.4500i1
n_=_4
L4791 + ,4498i1
.4666 + .68711
.4872 + .16241
.4846 + .28851
.4884 + ,05251
.2836 + .9946]
.4426 + 1,29031
.9445 + ,32991
.0494 + .54081
.5000 - .49991
.5000 - .5001i
.4881 - .0528i1
.4850 - .63111
.4865 - .16141
.4879 - .28641
.7084 - .16531
5422 - 1.05331
.620a - 2.,08321
.B768 + 1.7047i
.1587 + .75541
.8347 + .10311
.5354 - 2.22821
.1382 - 1.10411
.0923 + 2.38991]
.0961 + 4.03421

n=>5
.4903 + .12661
.4891 + .2192i
.4870 + .3265i

.4545 + 1.33081
.2160 + ,87951
.3225 + 1.0832i
.4896 - .3246i
.1237 - 1.8279]
.9097 + 2.1425i
.4901 - .1268i
.4884 - .21861
.5000 - .4999i

.4832 + ,46001
.4758 + .64181
.4908 + .04141i
.9562 + .36611
.0389 + ,5322i
.4909 - ,04151

.5000 - .50011
.4888 — .59941
.5233 - .88571
.5360 - 1.3667i
.6333 + 1.65831
.1238 + .70011
.2395 - .94661
.4201 + 2,97391
.6760 + 5.01291
.8711 + ,19251

n=6

.4921 + .10391
L4915 + 17771



.4904
.4623
.1752
.2562
- .4897
.0419
.8114
.4922
.4914
.5000
.4859
.4811
.4924
.9638
.0322
4924
. 5000
.4910
.5154
.5195
.6079
L1017

- .2958

.1337

I+ + 1

+

.25901
1.35831
.80901
.9662i1
.25851
1.33571
1.99881
.10391
L17791
.49991
.46681
.61421
.0342i1
.38961
. 52661
.0342i1
.5001i
.58011
.7T9631
1.09911
1.62871
.66461
.85451
2.56111

R

[\ S E

.7425
.3494
.5443
.8203
. 3879
.4887
.8941
.7388
.4934
.4930
.4924
.4678
L1477
.2135
L7527
.4879
.4845
.4936
. 9692
.0274
.3907
.0863
.9831
.3531

+

+

+

+ +

+ 4+ + F +FF o+ 4+

3.54581
1.14491
1.67231
.09701
2.14021
.35281
.2484i
.07201
.08811i
.1497i
.21561
1.37821
.76101
.8898i
1.90781
.47161
.59561
.02911
.40611
.52271
1.6087i1
.63991
2.3251i
2.96941

1.2861
.4914
1.3691
.9102
3.0621
.8486
.4900
.4788
.4923
.1380
.4934
.4931
.5000
.4936
.5000
.4925
.5113
.5135
.3314
.5255
~.1532
.4908
.5533

4+ + + + 4+ + + +

Il

I

1.03081
.28861
1.19051
.28691
4.1109i
.16161
.37211
.75981
.21591
1.16321
.08811
.14971
.49991
.02911
.5001i
.56701
. 74071
.95951
.79391
1.31271
1.70991

.28821
1.97871
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For Example 3
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n=1

.5226 + .2879i
.0941 + .56981i

L=2

.5129 + .3985i
.5421 + 1.03641
.5083 + .1141i
0369 + .2277i
.1835 + 2.0524i
.0572 + ,7947i

n=3
.5081 + ,22831
.5089 + .43321
.5052 + .0719i
.5640 + 1.7005i
5173 + 77771
.0234 + .14371
.0402 + .8653i
.0277 + .45683i
.0786 + 1.5517i
.2886 + 3.36781
.5050 + .2887i
.5041 + .16241i
.5067 + 45021
.5108 + .6881i
.5225 + 1.12261
.5860 + 2.3494i
.5038 + .0525]
.0172 + .1051i
.0188 + .3248i
.0307 + .8998i

Appendix D
Smooth Weierstrass Points for Example 2

.0226
.0492
.1031
.3972

I+ 1+ 1+ &+

1
2
4
5

.9031

.50335
.504z2
.5054
.5130
.5078
.5278
.6082
.5030
.0135
.0143
.0160
.0192
.0248
.0356
.0594
.5076
.1284

t+

1+

(RS IS S [

I+

I+ 1+

I+ 1+

I+ t+ I+ 1+ 1+ 1+

57711
.37491
. 24081
.65441

.12661
.21931
.32671

.46031

.92381
.64231

1
2

.45601
.99261

.04141
.08281
.256321
.4385i1
.85311
.92021

R NN A = =

.5025

.5027
.5031
.50386
.5045
.5061
.5090

I+ 1+

i+

I+ 1+

1+

1+

.28411
.84621
.93101
.90711

.10391
7771
.25911
.35291
.46691

.61451

.82211

.5153

+ 1.15091
.5333 + 1.7839i
.5024 + ,03421
.6305 + 3.6382i
.0112 + .06841
.0116 + .2078i
.0166 + .70571
.0125 + .3553i
.0141 + .5181i
.0208 + .9337i
.0279 + 1.2288i
.0412 + 1.64361
.0701 + 2.3001
.6191 + 7.2031i

n=27

.5021 + .0882i
.5025 + .21587i
.5028 + ,2887i
.5032 + .3722i
.5039 + .4717i
.5050 + .5959i
.5068 + .7602i
5103 + .99551
5177 + 1.37351
.5021 + ,0291i
.6530 + 4.2722i
.0095 + .05821
.0098 + .1763i
.0103 + .2994i
0112 + .43131
.0126 + .57731




L0147 + .7444i
1.0179 + .9433i
1.0229 + 1.1915i
+.0313 + 1.52001
1.0470 + 1.9903i
1.0810 + 2.7455i
1.7315 + 8.4726i
n=2=8
.5020 + .1852i

.5025 + .3116i

-

[ O

.5029
.5034
.5042
.5055
.5076
.5116
.5201
.B6756
.5018
.0088

I+ t+ t+ I+ 1+ 1+ 1+ 1+ 1+

I+

.38701
.47531
.58241
.71831
.90081
1.16501
1.59341
4.9105i1
.076861
.25891

. 0094
.0102
.0114
.0132
.0157
.0194
.0252
.0350
.0530

I+ 1+ 1+

I+

i+ I+ 1+ 1+

I+

.37031
.49051
.62321
77401
.95041
1.1647i
1.4364i
1.8011i
2.32931




his is a package of definitions and basic

outines for complex arithmetic for use in New

atrixcal and other programs. The type Complex
is defined as:

ype

Complex = Record
Re,Im: Real;
End;

n the main program.}
unction C(X:DOUBLE): Complex;
Converts X to the Complex number X+0i}

Var
Temp: Complex;

Begin
Temp.Re:=X;
Temp.Im:=0.0;

C:=Temp;

End; ?C}

unction CAdd4(Z1,Z2: Complex): Complex;
Bdds the complex numbers Z1 and Z2}

Var
"Temp: Complex;

Begin

Temp.Re:=Z1l.Re + Z2.Re;
Temp.Im:=Z1.Im + Z22.Im;
CAdd:=Temp;

End; {cadd}

unction CSub(21,Z2: Complex)}: Complex;
Subtracts the complex number Z2 from Z1}

Var
Temp: Complex;

Begin

Temp.Re:=Z21.Re — Z2.Re;
Temp.Im:=Z1,.Im - Z2.Im;
CSub:=Temp;

End; {CSub)

unction CMult(Z1,Z2: Complex): Complex;
Multiplies 21 and 22}

Var
Temp: Complex;

Begin

Temp.Re:=Z1.Re * Z2.Re - Z1.Im * Z2.Im;
Temp.Im:=Z1.Re * Z2.Im + Z1.Im * Z2.Re;
CMult:=Temp; :
End; {CMult}

unction CConj{Z: Complex): Complex;




.omputes the complex conjugate . of Z}

far
Temp: Complex;

jegin
'emp.Re:=Z.Re;
‘emp.Im:=—Z.Im;
Conj:=Temp;
ind; {CConij}

inction CAbs(Z: Complex}: DOUBLE;
'‘omputes the absolute value of %}

jegin
‘Abs:=5qgrt(Sgr(Z2.Re} + Sqgr{Z.Im));
md; {Cabs}

nction CInverse(Z: Complex): Complex;
nverts Z, assuming Z <> 0}

iegin
Inverse:=CMult{CConj(Z),C(l.0D0/Sar{Cabs(Z))));
nd; {CInverse}

Function CPower (Z:Complex; p:integer):Complex;
{computes Z to the pth power}

Var r, theta:DOUBLE;
temp:Complex;
ratio:DOUBLE;

Begin

ratio:=Z.Im/Z.Re;

r:=5qrt(Sqgr{(Z.Re) + Sqr{Z.Im}}):

if Z.Re>0 then theta:= arctan(ratio}
else theta:= arctan(ratio) + 3.14159265;
temp.Re:= (r**p)*(cos(p*theta));
temp.Im:= (r**p)*({sin(p*theta)});
CPower:=temp;

End; {CPower]}
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3RAM ComplexNewton(Input,Output);

is program applies .the usual (one variable) Newton's method for finding
ots of equations f(x) = 0 to solving polynomial equations

th complex coefficients. The routines for complex arithmetic

> contained in the %INCLUDE file 'mcpack.pas'.

itten by: John Little

ce: Feb 2, 1988
7ised by: Kathryn Furio
te: March 20, 1988}

~ONST
Tolerance = 1.0D-8;

[YPE
Complex = RECORD
Re,Im: Double;
END;

JAR
Starting, Next, A, B: Complex;
Difference: Double;

n, p, Iterations: Integer;

Response, Responsel2: Char;

bl, c¢l, b2, c2, sl, s2, s3, sd4:complex;

%$INCLUDE 'mcpack.pas’

FUNCTION EvalF(p: Integer; bl,b2,cl,c2,s1,s52,s3,s84,2: Complex): Complex;

VAR
Pl, P2, P3, P4, suml, sum2:complex;

BEGIN {EvalF}

Pl:=CMult(sl,CMult(CPower (CSub(b2,2Z),p),CPower (CSub(bl,Z),p)))
P2:=CMult(s2,CMult({CPower (CSub(c2,2Z),p),CPower (C5ub(bl,Z),p)))
P3:=CMult(s3,CMult{CPower{CSub(cl,2),p),CPower (CSub{(b2,Z2),p)))
P4:=Cﬁult(s4,CMult(CPower(CSub(cl,Z),p),CPower(CSub(cz,Z),p)))
suml :=CAdd(P1,P2);

sum2:=CAdd(P3,P4});

EvalF:=CAdd({suml, sum2);

END; {Evalr}

FUNCTION EvalDer(p:integer;bl,b2,cl,c2,sl,s2,s53,s4,Z2:Complex):Complex;

VAR
Pl, P2, P3, P4, PS5, P6, P7, PS,suml, sum?2:complex;

BEGIN {EvalDer}
Pl:=CMult(C(p),CMult (CPower (CSub(b2,Z),p-1),CPower (CSub(bl,2),p
P2:=CMult(C(p),CMult(CPower (CSub(b2,2),p),CPower{CSub(bl,Z),p-1
P3:=CMult(C(p),CMult(CPower(CSub{c2,2),p-1),CPower {CSub(bl,2),p
P4:=CMult(C(p),CMult(CPower{CSub{c2,2),p),CPower {CSub(bl,Z),p-1
P5:=CMult(C(p),CMult(CPower (CSub{cl,Z2),p-1),CPower{CSub(b2,2),p
P6:=CMult(C(p),CMult{CPower (CSub{cl,Z),p),CPower(CSub(b2,2),p-1
P7:=CMult(C(p),CMult(CPower{CSub(cl,Z),p~1),CPower(CSub(c2,2),p
P8:=CMult(C(p),CMult(CPower (CSub(cl,2),p),CPower(CSub(c2,2),p-1
suml : =CAdd{CAdd (CMult{sl,Pl),CMult(sl,P2)),CAdd(CMult(s2,P3),
CMult(s2,P4)));
sum?2:=CAdd{CA44{CMult{s3,P5),CMult(s3,P6)), CAdd(CMult(s4 P?7),
CMult(s4,PB8)));
EvalDer:—CMult£C( 1),CAdd(suml,sum2));
END; {EvalDer
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BEGIN {Main}
writeln;
writeln('Enter the values of the points being identified in C.')y;
writeln('Enter” these in the order bl, cl, b2, c2, where bl and'y);
writeln{'cl are identified, b2 and c2 are identified.'); ;
writeln; B
writeln('Real Part of bl:');
readln(bl.Re);
writeln;
writeln('Imaginary Part of bl:');
readln(bl.Im);
writeln;
writeln('Real Part of cl:'});
readln(cl.Re);
writeln;
writeln('Imaginary Part of cl:');
readln{cl.Im);
writeln;
writeln('Real Part of b2:');
readln(b2.Re);
writeln;
writeln('Imaginary Part of b2:');
readln(b2.Im);
writeln;
writeln('Real Part of c2:');
readln(c2.Re});
writeln;
writeln('Imaginary Part of c2:');
readln{c2.Im);
writeln;
sl1:=CSub(b2,bl);
s82:=CSub{bl,c2);
53:=CSub(cl,b2);
s4:=CSub({c2,cl);
REPEAT ]
writeln('Enter the value of n.');
writeln;
readln(n);
:=4*n-1:
REPEAT
Iterations:=0;
Writeln('Enter first approximation to root'};
Writeln('Real part:');
Readln(Starting.Re);
Writeln('Imaginary Part:');
Readln(Starting.,Im);
Writeln;
REPEAT
Iterations:=Iterations+1;
A:=EvalF(p,bl,b2,cl,c2,sl,s2,s3,s4,Starting);
B:=EvalDer(p,bl,b2,cl,c2,sl,sZ,s3,s4,Starting);
Next:=CSub(Starting,CMult(A,CInverse(B)));
Writeln(Iterations:1,'th approximation to root: "Yi
Writeln(Next.Re:l:?,'+‘,Next.Im:l:7,‘i');
Difference:=CAbs(CSub(Starting,Next));
Starting:=Next;
UNTIL (Iterations = 20) OR (Difference < Tolerance);
Writeln('Do you want to try again with another starting value (Y¥/N)?'):
Readln(Response);
UNTIL Response IN ['N','n'];
writeln('Would you like to try another value of n?');
readln(Responsel); :
writeln;
UNTIL Response2 in ['N', 'n'];
END. {Main}
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