A Confocal Fabry Perot Etalon for Laser Frequency Analysis

Theodore Arsenault
College of the Holy Cross, tharse18@g.holycross.edu

Follow this and additional works at: https://crossworks.holycross.edu/phys_stu_scholarship

Recommended Citation
https://crossworks.holycross.edu/phys_stu_scholarship/2

This Presentation is brought to you for free and open access by the Physics Department at CrossWorks. It has been accepted for inclusion in Physics Student Scholarship by an authorized administrator of CrossWorks.
A Confocal Fabry Perot Etalon for Laser Frequency Analysis

Theodore Arsenault and Paul Oxley
Department of Physics, College of the Holy Cross
One College Street, Worcester, MA 01610
Introduction: What is a Fabry Perot Etalon?

• Cavity formed by two highly reflective mirrors

• Mirrors could be flat (planar) or curved

• If laser light is incident on the cavity and if the laser light has the correct frequency, the light will couple into the cavity

• Our Fabry Perot etalon can be used to calibrate the frequency of a laser beam coupled into the etalon. This laser can then be used in atomic physics experiments
Confocal Fabry Perot Etalon

- Particular laser frequencies get into the cavity while others are rejected
- Resonance between laser light and cavity when
 - $n\lambda_n = 4d, n = 1,2,3 \ldots$
 - $f_{n+1} - f_n = \frac{c}{4d} = \text{FSR}$
- Measure d tells us the FSR used to calibrate the frequency of our laser
Our Fabry Perot Etalon

- Laser Light
- 30 cm
- Mirrors
- Piezo Electric Transducer (PZT)
Operation Methods

– Method 1
 • Keep laser frequency fixed and scan the cavity length, d
 – Testing of the cavity done with this method

– Method 2
 • Keep d fixed and scan the laser frequency
 – This method is used to determining atomic physics experiment laser frequency
Experimental Setup

Laser

Planar Mirror M1

Linear Polarizer

¼ waveplate

Optical Isolator

+50cm Lens

Planar Mirror M2

PZT

Confocal Fabry Perot Cavity

Photodiode
Method 1

- Depiction of the data taken from oscilloscope
- Yellow peak = signal from the photodiode
- Blue peak = linearly increasing voltage applied over time to the PZT to linearly change cavity length d
Alignment of laser into Fabry Perot Etalon

Removed the photodiode and put camera in place

Photograph of the transmission through the cavity with input beam misaligned with the cavity.

Photograph of the transmission through the cavity with input beam aligned with the cavity.

Photodiode inserted back into place

Photodiode Voltage (V)

Photodiode Voltage (V)

Time (Seconds)

Time (Seconds)
Photodiode Signal

Signal From Cavity Scan

$FSR=250\,MHz$
Minimizing Cavity Length Drift

Schematic of Fabry Perot cavity enclosure to prevent air currents and temperature drifts which would disturb the Fabry Perot cavity’s stability.

Visualization of laboratory setup with the thermally insulated enclosure covering the Fabry Perot cavity.
Improvement due to Enclosure

- Significant reduction in cavity drift when enclosure is on the cavity

- **Cavity Drift With no Enclosure**
 - ≈ 90 MHz in 5 minutes

- **Cavity Drift With Enclosure**
 - ≈ 8 MHz in 5 minutes
Short and Long Term Drift

Stabilization of Peak over Several Hours

- ~50 MHz/ Hour long term drift
- < 2MHz over an interval of 10 seconds

Stabilization of Cavity Over ten Seconds

- These drifts are small enough to allow the Fabry Perot Cavity to successfully calibrate the atomic physics laser

0 2 4 6 8 10

Time (Seconds)

0 2 4 6 8 10

Frequency (MHz)

45 MHz/hour

0 2 4 6 8 10

Time (Hours)

0 2 4 6 8 10

Frequency (MHz)
Frequency Scan of the Atomic Physics Laser allows for successful frequency analysis of beam used in atomic physics experiments

- Scan Rate = 1013 MHz/sec
Thank You

• Research Advisor – Professor Paul Oxley
• College of the Holy Cross Department of Physics